Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
C99 is the immediate precursor of amyloid-β (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer's disease (AD). Recent studies have shown that C99 dimerization changes the Aβ ratio, but the mechanism remains unclear. Previous studies of the C99 dimer have produced controversial structure models. To address these questions, we investigated C99 dimerization using molecular dynamics (MD) simulations. A helix-switch model was revealed in the formation and transition of the C99 dimer, and six types of conformations were identified. The different conformations show differential exposures of γ-cleavage sites and insertion depths in the bilayer, which may modulate γ-cleavage of C99 and lead to different Aβ levels. Our results redefine C99 dimerization, provide a framework to mediate the current controversial results, and give insights into the understanding of the relationship between C99 dimerization and Aβ formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.8b00559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!