The synthesis of graphdiyne with an ordered internal structure is highly attractive for its various scientific and application investigations. We reported herein a rational method to fabricate a graphdiyne analogue with the help of supramolecular chemistry. The introduction of π-π/CH-π interactions controlled the conformations of the precursors and afforded multilayer graphdiyne analogue Ben-GDY through the wet chemical method. The in-plane periodicity of the multilayer Ben-GDY was corroborated by transmission electron microscopy and selected area electron diffraction, which showed a pattern well matched with ABC-style stacking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b09945 | DOI Listing |
Chem Sci
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
Graphdiyne (GDY) alone as a photocatalyst is unsatisfactory because of its low crystallinity, limited regulation of the band gap, weak photogenerated charge separation, , and heterojunctioning with other materials is necessary to activate the photocatalytic activity of GDY. Through elaborate design, a diacetylene-rich linker (S2) was prepared and employed to construct a crystalline and structurally well-defined GDY-like covalent organic framework (COF, namely S2-TP COF) which merges the merits of both COF and GDY to boost the photocatalytic hydrogen evolution reaction (HER). By theoretical prediction on the donor-acceptor (D-A) pair, two other monoacetylene-bridged COFs (S1-TP COF and S3-TP COF) were prepared for comparison.
View Article and Find Full Text PDFAdv Mater
August 2024
Physics Department E20, Technical University of Munich, D-85748, Garching, Germany.
Graphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China.
A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2023
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp.
View Article and Find Full Text PDFJ Am Chem Soc
May 2023
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
Realizing efficient hydrogenation of N molecules in the electrocatalytic nitrogen reduction reaction (NRR) is crucial in achieving high activity at a low potential because it theoretically requires a higher equilibrium potential than other steps. Analogous to metal hydride complexes for N reduction, achieving this step by chemical hydrogenation can weaken the potential dependence of the initial hydrogenation process. However, this strategy is rarely reported in the electrocatalytic NRR, and the catalytic mechanism remains ambiguous and lacks experimental evidence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!