The scattering properties of biological tissue are highly dependent on the structure size, refractive index, and wavelength of the incident light. Furthermore, these scattering characteristics are strongly influenced by movements of the scattering objects. A method is developed to determine the angular- and spectral-resolved scattering properties that enabled the characterization of biological nano- and microscaled cell structures. Nanosecond pulses from a spectrally filtered supercontinuum light source are captured and time-resolved to depress background noise and minimize disruptive effects of the biological cells. The scattering characteristics of a monolayer of mouse fibroblast L929 cells are measured at defined wavelengths in a standard cell culture plate. Because of the size and distribution of the scattering structures, a Fourier transform-based Mie scattering scheme is used to analyze the data. The system is tested to detect structural changes of mouse fibroblast L929 cells before and after poisoning with Triton X100. The final result is the development of a contamination-free method to study pathological changes in cell cultures, necrosis, or other cell-damaging effects.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.23.12.121619DOI Listing

Publication Analysis

Top Keywords

mouse fibroblast
12
fibroblast l929
12
l929 cells
12
scattering
8
scattering properties
8
scattering characteristics
8
supercontinuum-based nondisruptive
4
nondisruptive scattering
4
scattering analyses
4
analyses mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!