A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating predictive tools for refinery effluent hazard assessment using stream mesocosms. | LitMetric

Investigating predictive tools for refinery effluent hazard assessment using stream mesocosms.

Environ Toxicol Chem

Concawe, The European Oil Companies' Association for Environment, Health and Safety in Refining and Distribution, Brussels, Belgium.

Published: March 2019

Hazard assessment of refinery effluents is challenging because of their compositional complexity. Therefore, a weight-of-evidence approach using a combination of tools is often required. Previous research has focused on several predictive tools for sophisticated chemical analyses: biomimetic extraction to quantify the potentially bioaccumulative substances, 2-dimensional gas chromatography, modeling approaches to link oil composition to toxicity (PETROTOX), and whole-effluent toxicity assessments using bioassays. The present study investigated the value of these tools by comparing predicted effects to actual effects observed in stream mesocosm toxicity studies with refinery effluents. Three different effluent samples, with and without fortification by neat petroleum substances, were tested in experimental freshwater streams. The results indicate that the biological community shifted at higher exposure levels, consistent with chronic toxicity effects predicted by both modeled toxic units and potentially bioaccumulative substance measurements. The present study has demonstrated the potential of the predictive tools and the robustness of the stream mesocosm design to improve our understanding of the environmental hazards posed by refinery effluents. Environ Toxicol Chem 2019;38:650-659. © 2018 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4338DOI Listing

Publication Analysis

Top Keywords

predictive tools
12
refinery effluents
12
hazard assessment
8
stream mesocosm
8
tools
5
investigating predictive
4
refinery
4
tools refinery
4
refinery effluent
4
effluent hazard
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!