Background: O-oxygen inhalation PET is unique in its ability to provide fundamental information regarding cerebral hemodynamics and energy metabolism in man. However, the use of O-oxygen has been limited in a clinical environment largely attributed to logistical complexity, in relation to a long study period, and the need to produce and inhale three sets of radiopharmaceuticals. Despite the recent works that enabled shortening of the PET examination period, radiopharmaceutical production has still been a limiting factor. This study was aimed to evaluate a recently developed radiosynthesis/inhalation system that automatically supplies a series of O-labeled gaseous radiopharmaceuticals of CO, O, and CO at short intervals.
Methods: The system consists of a radiosynthesizer which produces CO, O, and CO; an inhalation controller; and an inhalation/scavenging unit. All three parts are controlled by a common sequencer, enabling automated production and inhalation at intervals less than 4.5 min. The gas inhalation/scavenging unit controls to sequentially supply of qualified radiopharmaceuticals at given radioactivity for given periods at given intervals. The unit also scavenges effectively the non-inhaled radioactive gases. Performance and reproducibility are evaluated.
Results: Using an O-dedicated cyclotron with deuteron of 3.5 MeV at 40 μA, CO, O, and CO were sequentially produced at a constant rate of 1400, 2400, and 2000 MBq/min, respectively. Each of radiopharmaceuticals were stably inhaled at < 4.5 min intervals with negligible contamination from the previous supply. The two-hole two-layered face mask with scavenging device minimized the gaseous radioactivity surrounding subject's face, while maintaining the normocapnia during examination periods. Quantitative assessment of net administration doses could be assessed using a pair of radio-detectors at inlet and scavenging tubes, as 541 ± 149, 320 ± 103, 523 ± 137 MBq corresponding to 2-min supply of 2574 ± 255 MBq for CO, and 1-min supply of 2220 ± 766 and 1763 ± 174 for O and CO, respectively.
Conclusions: The present system allowed for automated production and inhalation of series of O-labeled radiopharmaceuticals as required in the rapid O-Oxygen PET protocol. The production and inhalation were reproducible and improved logistical complexity, and thus the use of O-oxygen might have become practically applicable in clinical environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300454 | PMC |
http://dx.doi.org/10.1186/s40658-018-0236-5 | DOI Listing |
STAR Protoc
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:
Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Human Anatomy, Graduate School, Inner Mongolia Medical University, Hohhot, 010010, Inner Mongolia, China.
Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, Liaoning 110819, China; Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking, Ministry of Education, Shenyang 110819, China. Electronic address:
Multiple processes connected closely during the endless strip production (ESP) rolling, it is difficult to obtain the global optimal solution by multi-objective modelling of a single process, and the parameters to be optimized coupled with each other. To obtain the optimal solution, a multi-objective optimization model combining the power consumption, product quality, and loading balance was proposed for the design of an ESP rolling schedule. The thickness and heating temperature were simultaneously taken as the decision variables for coupling the temperature and loading in the rolling process, and the non-dominated sorting genetic algorithm-II (NSGA-II) based on differential evolution (NSGA-II-DE) was applied to obtain the Pareto solutions.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania. Electronic address:
Background: Today, in a wide variety of industries, grinding operations are an extremely important finishing process for obtaining precise dimensions and meeting strict requirements for roughness and shape accuracy. However, the constant wear of abrasive tools during grinding negatively affects the dimensional and surface conditions of the workpiece. Therefore, effective monitoring of the wear process during grinding operations helps to predict tool life, plan maintenance and ensure consistent product quality.
View Article and Find Full Text PDFSLAS Technol
January 2025
Cell Line Development, WuXi Biologics, Shanghai, China, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
Laboratory automation in the biopharmaceutical industry as a rule requires contracted service from highly professional automation solution provider, at times involving the purchase and development of specialized or customized hardware and software, which can be proprietary and expensive. Alternatively, with the availability of open-source software customized for automation, it is possible to automate existing laboratory instruments in a do-it-yourself (DIY), low-cost, and flexible fashion. In this work, we used an open-source scripting language, AutoIt, to integrate an existing microplate imager into an existing automation platform that is already equipped with a 4-axis robotic arm and an automated incubator, to achieve automation of the imaging procedure in our cell line development workflow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!