Introduction: As the role of biomarkers is increasing in Alzheimer's disease (AD) clinical trials, it is critical to use a comprehensive temporal biomarker profile that reflects both baseline and longitudinal assessments to establish a more precise association between the change in biomarkers and change in cognition. Because age of onset of dementia symptoms is highly predictable, and there are relatively few age-related comorbidities, the Dominantly Inherited Alzheimer Network autosomal dominant AD population affords a unique opportunity to investigate these relationships in a well-characterized population.

Methods: A novel joint statistical model was used to simultaneously evaluate how a comprehensive AD biomarker profile predicts change in cognition using amyloid positron emission tomography (PET), CSF Aβ, CSF total tau and Ptau, cortical metabolism using [F-18] fluorodeoxyglucose-PET, and hippocampal volume from participants enrolled in the Dominantly Inherited Alzheimer Network (n = 262) with mean (SD) duration of follow-up of 2.7 (1.2) years.

Results: Baseline amyloid PET levels and CSF biomarkers were associated with change in cognition in contrast to the rate of change of brain metabolism and hippocampal volume, which predicted change in cognition.

Conclusions: This study suggests that the baseline value of amyloid PET and CSF Aβ measures may be useful for screening participants for AD trials; however, brain hippocampus atrophy and hypometabolism are only useful as repeated longitudinal assessments for tracking cognition and disease progression. This suggests that measures of amyloid plaques predict future cognitive decline, but only longitudinal measures of neurodegeneration correlate with cognitive decline. The novel statistical model used in this study can be easily applied to any pair of outcomes and has potential to be widely used by the AD research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288312PMC
http://dx.doi.org/10.1016/j.trci.2018.10.009DOI Listing

Publication Analysis

Top Keywords

dominantly inherited
12
change cognition
12
alzheimer's disease
8
biomarker profile
8
longitudinal assessments
8
inherited alzheimer
8
alzheimer network
8
statistical model
8
pet csf
8
csf aβ
8

Similar Publications

In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa.

J Genet Genomics

December 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. Electronic address:

Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo.

View Article and Find Full Text PDF

Biochemical analysis to study wild-type and polyglutamine-expanded ATXN3 species.

PLoS One

December 2024

Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain.

Spinocerebellar ataxia type 3 (SCA3) is a cureless neurodegenerative disease recognized as the most prevalent form of dominantly inherited ataxia worldwide. The main hallmark of SCA3 is the expansion of a polyglutamine tract located in the C-terminal of Ataxin-3 (or ATXN3) protein, that triggers the mis-localization and toxic aggregation of ATXN3 in neuronal cells. The propensity of wild type and polyglutamine-expanded ATXN3 proteins to aggregate has been extensively studied over the last decades.

View Article and Find Full Text PDF

Tripartite motif-containing 8 (TRIM8) gene mutations are associated with autosomal dominantly inherited neurorenal syndrome. The kidney manifestations range from nephrotic range proteinuria to nephrotic syndrome and kidney failure. The histopathology has been focal segmental glomerulosclerosis (FSGS) in all reported cases.

View Article and Find Full Text PDF

Cornelia de Lange syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder. Pathogenic variants in genes encoding the structural subunits and regulatory proteins of the cohesin complex (, , , , and ) are the primary contributors to the pathogenesis of CdLS. Pathogenic variations in these genes disrupt normal cohesin function, leading to the syndrome's diverse and complex clinical presentation.

View Article and Find Full Text PDF

Background: Kallmann syndrome (KS) is a rare genetic disorder marked by hypogonadotropic hypogonadism and either anosmia or hyposmia. It exhibits genetic heterogeneity, with mutations identified in only 30 % of cases, involving various genes such as KAL1, FGFR1, FGF8, CHD7, and SOX10. Here, we present a case of gonadotropin deficiency associated with KS, observed in both a mother and her daughter, the latter conceived through assisted reproductive technology using the mother's ovum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!