Background: is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of cells. However, mechanisms beyond the cobalt enrichment remain unknown. This study seeks to explore the physiological and transcriptional response and the metabolic pathways involved in cobalt-induced hydrocarbon synthesis in algae cells.
Results: Growth curves were similar at either normal or high cobalt concentration (4.5 mg/L), suggesting the absence of obvious deleterious effects on growth introduced by cobalt. Photosynthesis indicators (decline in Fv/Fm ratio and chlorophyll content) and reactive oxygen species parameters revealed an increase in physiological stress in the high cobalt concentration. Moreover, cobalt enrichment treatment resulted in higher crude hydrocarbon content (51.3% on day 8) compared with the control (43.4% on day 8) throughout the experiment (with 18.2% improvement finally). Through the de novo assembly and functional annotation of the race A SAG 807-1 transcriptome, we retrieved 196,276 non-redundant unigenes with an average length of 1086 bp. Of the assembled unigenes, 89,654 (45.7%), 42,209 (21.5%), and 32,318 (16.5%) were found to be associated with at least one KOG, GO, or KEGG ortholog function. In the early treatment (day 2), the most strongly upregulated genes were those involved in the fatty acid biosynthesis and metabolism and oxidative phosphorylation, whereas the most downregulated genes were those involved in carbohydrate metabolism and photosynthesis. Genes that produce terpenoid liquid hydrocarbons were also well identified and annotated, and 21 (or 29.2%) were differentially expressed along the cobalt treatment.
Conclusions: SAG 807-1 can tolerate high cobalt concentration and benefit from hydrocarbon accumulation. The time-course expression profiles for fatty acid biosynthesis, metabolism, and TAG assembly were obtained through different approaches but had equally satisfactory results with the redirection of free long-chain fatty acid and VLCFA away from TAG assembly and oxidation. These molecules served as precursors and backbone supply for the fatty acid-derived hydrocarbon accumulation. These findings provide a foundation for exploiting the regulation mechanisms in race A for improved photosynthetic production of hydrocarbons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297975 | PMC |
http://dx.doi.org/10.1186/s13068-018-1331-5 | DOI Listing |
Chem Asian J
January 2025
Vijayanagara Sri Krishnadevaraya University Bellary, Chemistry, Vinayakanagar, Ballari, INDIA.
Hydrogen energy is widely regarded as one of the cleanest forms of green energy due to its bio-friendly nature. One of the major issues is related to high production cost, which can be overcome by designing of effective catalysts . In this study, we report the synthesis of an eco-friendly, affordable, and highly redox-active tetra-imidazole functionalized cobalt phthalocyanine (TImCoPc) through a straightforward method.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
Backgrounds: Renal interstitial fibrosis (RIF) constitutes the ultimate pathological alteration in nearly all chronic kidney diseases (CKD). Mesenchymal stem cell conditioned medium (MSC-CM) exhibits an alleviating impact on renal fibrosis; however, the underlying mechanism remains unclear. The objective of this study was to explore whether MSC-CM regulates the expression of α-smooth muscle actin (α-SMA), Transforming growth factor-β1 (TGF-β1), Hypoxia-inducible factor-1α (HIF-1α), Nuclear receptor coactivators (NCOA1), and SRY-related high mobility (Sox9).
View Article and Find Full Text PDFInorg Chem
January 2025
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.
The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:
In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!