Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328316PMC
http://dx.doi.org/10.1038/s41586-018-0801-zDOI Listing

Publication Analysis

Top Keywords

beige fat
16
thermal stress
8
stress induces
8
glycolytic beige
8
beige adipocyte
8
beige
6
induces glycolytic
4
fat
4
fat formation
4
formation myogenic
4

Similar Publications

The failure of the fight against obesity makes us turn to new goals in its treatment. Now, brown adipose tissue has attracted attention as a promising target for the treatment of obesity and associated metabolic disorders such as insulin resistance, dyslipidemia, and glucose tolerance disorders. Meanwhile, the expansion of our knowledge has led to awareness about two rather different subtypes: classic brown and beige (inducible brown) adipose tissue.

View Article and Find Full Text PDF

E3 ligase FBXW7 suppresses brown fat expansion and browning of white fat.

EMBO Rep

January 2025

Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.

Thermogenic fat, including brown and beige fat, dissipates heat via thermogenesis and enhances energy expenditure. Thus, its activation represents a therapeutic strategy to combat obesity. Here, we demonstrate that levels of F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, negatively correlate with thermogenic fat functionality.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis.

Elife

December 2024

Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.

The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application.

View Article and Find Full Text PDF

Cold-Induced Browning: A Novel Method to Improve the Retention Rate of Fat Graft.

Aesthetic Plast Surg

December 2024

Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 15, Changle West Road, Xi'an, 710032, Shaanxi, China.

Background: Autologous fat grafting is frequently used to heal soft-tissue defects. The key restriction that must be addressed is the poor transplant retention rate. Growing evidence has demonstrated that the browning of white adipose tissue enhances the survival of fat grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!