Perivascular Adipocytes Store Norepinephrine by Vesicular Transport.

Arterioscler Thromb Vasc Biol

From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing.

Published: February 2019

Objective- Perivascular adipose tissue (PVAT) contains an independent adrenergic system that can take up, metabolize, release, and potentially synthesize the vasoactive catecholamine norepinephrine. Norepinephrine has been detected in PVAT, but the mechanism of its protection within this tissue is unknown. Here, we investigate whether PVAT adipocytes can store norepinephrine using VMAT (vesicular monoamine transporter). Approach and Results- High-performance liquid chromatography identified norepinephrine in normal male Sprague Dawley rat aortic, superior mesenteric artery, and mesenteric resistance vessel PVATs, and retroperitoneal fat. Real-time polymerase chain reaction revealed VMAT1 and VMAT2 mRNA expression in the adipocytes and stromal vascular fraction of mesenteric resistance vessel PVAT. Immunofluorescence demonstrated the presence of VMAT1 and VMAT2, and the colocalization of VMAT2 with norepinephrine, in the cytoplasm of adipocytes in mesenteric resistance vessel PVAT. A protocol was developed to capture real-time uptake of Mini 202-a functional and fluorescent VMAT probe-in live rat PVAT adipocytes. Mini 202 was taken up by freshly isolated and differentiated adipocytes from mesenteric resistance vessel PVAT and adipocytes from thoracic aortic and superior mesenteric artery PVATs. In adipocytes freshly isolated from mesenteric resistance vessel PVAT, addition of rose bengal (VMAT inhibitor), nisoxetine (norepinephrine transporter inhibitor), or corticosterone (organic cation 3 transporter inhibitor) significantly reduced Mini 202 signal. Immunofluorescence supports that neither VMAT1 nor VMAT2 is present in retroperitoneal adipocytes, suggesting that PVAT adipocytes may be unique in storing norepinephrine. Conclusions- This study supports a novel function of PVAT adipocytes in storing amines in a VMAT-dependent manner. It provides a foundation for future studies exploring the purpose and mechanisms of norepinephrine storage by PVAT in normal physiology and obesity-related hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344267PMC
http://dx.doi.org/10.1161/ATVBAHA.118.311720DOI Listing

Publication Analysis

Top Keywords

pvat adipocytes
20
mesenteric resistance
20
resistance vessel
20
vessel pvat
16
vmat1 vmat2
12
pvat
11
adipocytes
10
norepinephrine
9
adipocytes store
8
store norepinephrine
8

Similar Publications

Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM.

Cell Mol Biol Lett

December 2024

Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.

Background: Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.

Methods: To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats.

View Article and Find Full Text PDF

: Perivascular adipose tissue (PVAT) exerts a paracrine effect on blood vessels and our objective was to understand PVAT molecular signatures related to cardiovascular disease. : We studied two groups: those undergoing mitral valve repair/replacement (VR, n = 16) and coronary artery bypass graft (CABG, n = 38). VR donors did not have coronary artery disease, whereas CABG donors had advanced coronary artery disease.

View Article and Find Full Text PDF

The adipose tissue surrounding blood vessels is known as perivascular adipose tissue (PVAT), which represents a distinct ectopic fat depot that adheres to the majority of the vasculature. In recent years, owing to its unique location and function, PVAT has been regarded as a new type of adipose tissue distinct from traditional visceral fat. It releases adipokines with vasoconstrictive functions, which regulate vascular function through paracrine and endocrine mechanisms.

View Article and Find Full Text PDF

Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice.

View Article and Find Full Text PDF

Macrophage foam cell-derived mediator promotes spontaneous fat lipolysis in atherosclerosis models.

J Leukoc Biol

November 2024

Metabolic Disease Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.

Ectopic lipid accumulation in macrophages is responsible for the formation of macrophage foam cells (MFCs) which are involved in the crosstalk with the perivascular adipose tissue (PVAT) of the vascular wall that plays a pivotal role in the progression of atherosclerosis. However, the interrelationship between MFCs and PVAT implementing adipocyte dysfunction during atherosclerosis has not yet been established. We hypothesized that MFC-secreted mediator(s) is causally linked with PVAT dysfunction and the succession of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!