Previously, researchers discovered a series of anti-CRISPR proteins that inhibit CRISPR-Cas activity, such as Cas9 and Cpf1 (Cas12a). Herein, we constructed crRNA variants consisting of chemically modified DNA-crRNA and RNA-crRNA duplexes and identified that phosphorothioate (PS)-modified DNA-crRNA duplex completely blocked the function of Cpf1. More important, without prehybridization, these PS-modified DNA oligonucleotides showed the ability to suppress DNA double-strand breaks induced by two Cpf1 orthologs, AsCpf1 and LbCpf1. Time-dependent inhibitory effects were validated in multiple loci of different human cells. Further studies demonstrated that PS-modified DNA oligonucleotides were able to serve as Cpf1 inhibitors in a sequence-independent manner. Mechanistic studies indicate that PS-modified DNA oligonucleotides hinder target DNA binding and recognition by Cpf1. Consequently, these synthetic DNA molecules expand the sources of CRISPR inhibitors, providing a platform to inactivate Cpf1-mediated genome editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326575 | PMC |
http://dx.doi.org/10.1016/j.celrep.2018.11.079 | DOI Listing |
J Am Chem Soc
December 2024
School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
Phosphorodiamidate Morpholino Oligonucleotides (PMOs) have been well established in the milieu of FDA-approved oligonucleotide-based drugs in the past decade. Given their relevance in antisense therapeutics, a DNA/RNA synthesizer-compatible modular synthesis protocol of PMOs is long awaited to explore next-generation PMO chimeras with other therapeutically proven oligonucleotide backbones. Herein, we demonstrate a streamlined 5' → 3'phosphoramidite approach for the synthesis of PMOs using -butyl-protected 5'-morpholino phosphoramidites, which were synthesized from 5'-OH morpholino monomers derived from commercially available ribonucleosides.
View Article and Find Full Text PDFMol Ther
December 2024
RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605 USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA. Electronic address:
Antisense oligonucleotides (ASOs) are emerging as a promising class of therapeutics for neurological diseases. When injected directly into cerebrospinal fluid, ASOs distribute broadly across brain regions and exert long-lasting therapeutic effects. However, many phosphorothioate (PS)-modified gapmer ASOs show transient motor phenotypes when injected into the cerebrospinal fluid, ranging from reduced motor activity to ataxia or acute seizure-like phenotypes.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
APOBEC3 (or A3) enzymes have emerged as potential therapeutic targets due to their role in introducing heterogeneity in viruses and cancer, often leading to drug resistance. Inhibiting these enzymes has remained elusive as initial phosphodiester (PO) linked DNA based inhibitors lack stability and potency. We have enhanced both potency and nuclease stability, of 2'-deoxy-zebularine (dZ), substrate-based oligonucleotide inhibitors for two critical A3's: A3A and A3G.
View Article and Find Full Text PDFNAR Genom Bioinform
June 2024
Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden.
Antisense oligonucleotides (ASOs) offer ground-breaking possibilities for selective pharmacological intervention for any gene product-related disease. Therapeutic ASOs contain extensive chemical modifications that improve stability to enzymatic cleavage and modulate binding affinity relative to natural RNA/DNA. Molecular dynamics (MD) simulation can provide valuable insights into how such modifications affect ASO conformational sampling and target binding.
View Article and Find Full Text PDFJ Chromatogr A
October 2023
Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
Oligonucleotides have become an essential modality for a variety of therapeutic approaches, including cell and gene therapies. Rapid progress in the field has attracted significant research in designing novel oligonucleotide chemistries and structures. Beyond their polar nature, the length of large RNAs and presence of numerous diastereomers for phosphorothioate (PS)-modified RNAs pose heightened challenges for their characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!