Background: Adjuvant System 03 (AS03) markedly enhances responses to influenza A/H5N1 vaccines, but the mechanisms of this enhancement are incompletely understood.
Methods: Using ribonucleic acid sequencing on peripheral blood mononuclear cells (PBMCs) from AS03-adjuvanted and unadjuvanted inactivated H5N1 vaccine recipients, we identified differentially expressed genes, enriched pathways, and genes that correlated with serologic responses. We compared bulk PBMC findings with our previously published assessments of flow-sorted immune cell types.
Results: AS03-adjuvanted vaccine induced the strongest differential signals on day 1 postvaccination, activating multiple innate immune pathways including interferon and JAK-STAT signaling, Fcγ receptor (FcγR)-mediated phagocytosis, and antigen processing and presentation. Changes in signal transduction and immunoglobulin genes predicted peak hemagglutinin inhibition (HAI) titers. Compared with individual immune cell types, activated PBMC genes and pathways were most similar to innate immune cells. However, several pathways were unique to PBMCs, and several pathways identified in individual cell types were absent in PBMCs.
Conclusions: Transcriptomic analysis of PBMCs after AS03-adjuvanted H5N1 vaccination revealed early activation of innate immune signaling, including a 5- to 8-fold upregulation of FcγR1A/1B/1C genes. Several early gene responses were correlated with HAI titer, indicating links with the adaptive immune response. Although PBMCs and cell-specific results shared key innate immune signals, unique signals were identified by both approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500554 | PMC |
http://dx.doi.org/10.1093/infdis/jiy721 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.
Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).
View Article and Find Full Text PDFPLoS One
January 2025
Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
J Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!