Update on the pathophysiology of psoriasis.

Cutis

Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Published: November 2018

Psoriasis is a genetically programmed pathologic interaction among skin cells, immunocytes, and numerous biologic signaling molecules that is triggered by environmental stimuli. The immune response is a cellular one; type 1 (TH1) and type 17 (TH17) T cells are activated by IL-12 and IL-23 secreted by antigen-presenting cells (APCs) in the skin. Through various cytokines, such as tumor necrosis factor (TNF) α, these cells cause a chronic inflammatory state and alter epidermal hyperproliferation, differentiation, apoptosis, and neoangiogenesis that produce the cutaneous findings seen in this disease. The newer biologic therapies target the immunologic signaling pathways and cytokines identified in the pathogenesis of psoriasis and provide notable clinical improvement. Further study in the pathogenesis of psoriasis can help identify targets for future therapies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pathogenesis psoriasis
8
update pathophysiology
4
psoriasis
4
pathophysiology psoriasis
4
psoriasis psoriasis
4
psoriasis genetically
4
genetically programmed
4
programmed pathologic
4
pathologic interaction
4
interaction skin
4

Similar Publications

Diversity and function of regulatory T cells in health and autoimmune diseases.

J Autoimmun

January 2025

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China. Electronic address:

Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status.

View Article and Find Full Text PDF

IL-17 and IL-23 inhibitors have shown successful results in improving skin lesions in the treatment of moderate-to-severe plaque psoriasis. However, psoriasis is a chronic inflammatory disease characterized by systemic inflammation including joints in addition to skin lesions. Therefore, in this retrospective and observational cohort study, we aimed to evaluate the effect of IL-17 inhibitors (secukinumab and ixekizumab) and IL-23 inhibitors (risankizumab and guselkumab) on systemic inflammation in psoriasis.

View Article and Find Full Text PDF

Psoriasis (PsO) is a chronic immune-mediated disease of the skin. Psoriatic arthritis (PsA) is a prevalent chronic inflammatory disease that is associated with joint destruction and disability. The presence of PsO is the single greatest risk factor for the development of PsA.

View Article and Find Full Text PDF

Investigation of Consultations Requested by Dermatology Inpatient.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Çukurova University, Faculty of Medicine, Adana, Turkey.

Background: Although dedicated dermatology wards have been closed in some countries, they continue to exist in others. Inpatient consultations requested from dermatologists have been investigated widely. However, those requested by dermatologists have been taken into consideration only in a few studies.

View Article and Find Full Text PDF

Introduction: Psoriasis is characterized by aberrant keratinocyte activity and immune cell infiltration, driven by immune-mediated pathways. MicroRNAs (miRNAs) play crucial roles in regulating these processes, offering insights into disease mechanisms and therapeutic targets.

Objectives: This study aimed to investigate changes in circulating miRNAs in psoriasis patients undergoing risankizumab therapy, an anti-IL-23 monoclonal antibody, to understand its impact on disease pathogenesis and treatment response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!