Proteasome inhibitors (PIs) have been identified as an emerging class of HIV-1 latency-reversing agents (LRAs). These inhibitors can reactivate latent HIV-1 to produce non-infectious viruses. The mechanism underlying reduced infectivity of reactivated viruses is unknown. In this study, we analysed PI-reactivated viruses using biochemical and virological assays and demonstrated that these PIs stabilized the cellular expression of HIV-1 restriction factor, APOBEC3G, facilitating its packaging in the released viruses. Using infectivity assay and immunoblotting, we observed that the reduction in viral infectivity was due to enhanced levels of functionally active APOBEC3 proteins packaged in the virions. Sequencing of the proviral genome in the target cells revealed the presence of APOBEC3 signature hypermutations. Our study strengthens the role of PIs as bifunctional LRAs and demonstrates that the loss of infectivity of reactivated HIV-1 virions may be due to the increased packaging of APOBEC3 proteins in the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.001205 | DOI Listing |
Int J Mol Sci
December 2024
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the gene to preferentially detect the untargeted mutations.
View Article and Find Full Text PDFVirol J
December 2024
Key Laboratory of Medicine, Nantong Center for Disease Control and Prevention, 189 GongnongnanRoad, Chongchuan District, Nantong, 226007, China.
Cancer Sci
December 2024
Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
Sci Rep
November 2024
Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
mBio
December 2024
Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
Unlabelled: The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has been characterized by rapid adaptive changes that confer immune escape and enhanced human-to-human transmissibility. Sequence change is additionally marked by an excess number of C→U transitions suggested as being due to host-mediated genome editing. To investigate how these influence the evolutionary trajectory of SARS-CoV-2, 2,000 high-quality, coding complete genome sequences of SARS-CoV-2 variants collected pre-September 2020 and from each subsequently appearing alpha, delta, BA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!