Rationale: Hypertrophic cardiomyopathy occurs with a frequency of about 1 in 500 people. Approximately 30% of those affected carry mutations within the gene encoding cMyBP-C (cardiac myosin binding protein C). Cardiac stress, as well as cMyBP-C mutations, can trigger production of a 40kDa truncated fragment derived from the amino terminus of cMyBP-C (Mybpc3). Expression of the 40kDa fragment in mouse cardiomyocytes leads to hypertrophy, fibrosis, and heart failure. Here we use genetic approaches to establish a causal role for excessive myofibroblast activation in a slow, progressive genetic cardiomyopathy-one that is driven by a cardiomyocyte-intrinsic genetic perturbation that models an important human disease.
Objective: TGFβ (transforming growth factor-β) signaling is implicated in a variety of fibrotic processes, and the goal of this study was to define the role of myofibroblast TGFβ signaling during chronic Mybpc3 expression.
Methods And Results: To specifically block TGFβ signaling only in the activated myofibroblasts in Mybpc3 transgenic mice and quadruple compound mutant mice were generated, in which the TGFβ receptor II (TβRII) alleles ( Tgfbr2) were ablated using the periostin ( Postn) allele, myofibroblast-specific, tamoxifen-inducible Cre ( Postnmcm) gene-targeted line. Tgfbr2 was ablated either early or late during pathological fibrosis. Early myofibroblast-specific Tgfbr2 ablation during the fibrotic response reduced cardiac fibrosis, alleviated cardiac hypertrophy, preserved cardiac function, and increased lifespan of the Mybpc3 transgenic mice. Tgfbr2 ablation late in the pathological process reduced cardiac fibrosis, preserved cardiac function, and prolonged Mybpc3 mouse survival but failed to reverse cardiac hypertrophy.
Conclusions: Fibrosis and cardiac dysfunction induced by cardiomyocyte-specific expression of Mybpc3 were significantly decreased by Tgfbr2 ablation in the myofibroblast. Surprisingly, preexisting fibrosis was partially reversed if the gene was ablated subsequent to fibrotic deposition, suggesting that continued TGFβ signaling through the myofibroblasts was needed to maintain the heart fibrotic response to a chronic, disease-causing cardiomyocyte-only stimulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309316 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.118.313089 | DOI Listing |
Sports (Basel)
January 2025
Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece.
Chronic lung diseases such as Chronic Obstructive Pulmonary Disease, Interstitial Lung Disease (ILD), and Pulmonary Hypertension (PH) are characterized by progressive symptoms such as dyspnea, fatigue, and muscle weakness, often leading to physical inactivity, and reduced quality of life. Many patients also experience significantly impaired exercise tolerance. While pulmonary, cardiovascular, respiratory, and peripheral muscle dysfunction contribute to exercise limitations, recent evidence suggests that hypoxia and impairments in cerebral oxygenation may also play a role in exercise intolerance.
View Article and Find Full Text PDFCells
January 2025
Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited.
View Article and Find Full Text PDFCells
January 2025
Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes.
View Article and Find Full Text PDFJ Pathol
January 2025
Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China.
The impact of high heterogeneity of cancer-associated fibroblasts (CAFs) on triple-negative breast cancer (TNBC) immunotherapy response has not been fully elucidated, restricting progress in precision immuno-oncology. We integrated single-cell transcriptomic data from 18 TNBC patients and analyzed fibroblast subpopulations. Extracellular matrix CAFs (ecmCAFs) were identified as a fibroblast subpopulation with distinct ECM-associated characteristics.
View Article and Find Full Text PDFJ Endocrinol
January 2025
J Shaw, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland.
Endocrine dysfunction and diabetes can develop secondary to fibrotic diseases within the pancreas including cystic fibrosis (CF). Phenotypic shift within epithelial cells has been recognised in association with pro-fibrotic signalling. We sought evidence of endocrine cell epithelial-to-mesenchymal transition in CF and non-CF pancreas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!