A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3br44cdc7cd0ug9aqfhgpq720dhjthbg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's-associated pathologies. | LitMetric

AI Article Synopsis

  • Amyloid β oligomers (AβOs) play a crucial role in the early stages of Alzheimer's disease (AD), contributing to memory issues and key AD-related pathologies like tau abnormalities and cognitive decline.
  • The study explores how a bifunctional crosslinker, 1,5-difluoro-2,4-dinitrobenzene (DFDNB), helps stabilize AβO structures, preventing them from forming larger aggregates and maintaining them in a soluble form.
  • Experiments show that DFDNB-stabilized AβOs can induce significant neurodegenerative effects, including tau hyperphosphorylation and memory dysfunction in mice, highlighting their potential for further research into AD diagnostics and treatments.

Article Abstract

Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO-targeting diagnostics and therapeutics, the AβO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50-300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top-down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure-function studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424489PMC
http://dx.doi.org/10.1111/jnc.14647DOI Listing

Publication Analysis

Top Keywords

amyloid oligomers
8
memory dysfunction
8
dfdnb crosslinking
8
aβos
5
dfdnb
5
novel crosslinking
4
crosslinking protocol
4
protocol stabilizes
4
stabilizes amyloid
4
oligomers capable
4

Similar Publications

The accumulation of amyloid β-proteins (Aβ) in the extracellular space, forming insoluble plaques, is a primary pathological process underlying Alzheimer's disease (AD). Among the various Aβ species that appear during Aβ aggregation, Aβ oligomers are considered the most neurotoxic form. However, the precise mechanisms of their molecular functions within the Aβ aggregation cascade have not been clarified so far.

View Article and Find Full Text PDF

The pathophysiological role of Aβ oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ and Aβ, which is more abundant but less aggregation-prone. This study investigates Aβ:Aβ oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ on Aβ fibrillation, suggesting an inhibitory effect on aggregation.

View Article and Find Full Text PDF

The Beneficial Effects of Combined Exercise and Polyphenols in Alzheimer's Disease.

Phytother Res

December 2024

Graduate School of Education in Physical Education, Sangmyung University, Seoul, Korea.

Regular exercise enhances life quality, lowers the risk of cognitive damage, and slows the advancement of Alzheimer's disease (AD). Natural compounds rich in polyphenols have garnered attention as a non-pharmacological means of treating and preventing AD. The primary component of wine, grape seeds, and nuts is polyphenols.

View Article and Find Full Text PDF

Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity.

Int J Biol Macromol

December 2024

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity.

View Article and Find Full Text PDF

Purpose: This study examines the interaction between benzoylmesaconine (BMA) and hen egg white lysozyme (HEWL) under various physiological conditions, aiming to determine how BMA affects the HEWL's structure and function.

Methods: Several analytical techniques were used, including tryptophan assay, light scattering, thioflavin T (ThT)-binding assay, dynamic light scattering, 8-anilino-1-naphthalenesulfonic acid (ANS)-binding assay, circular dichroism (CD) spectroscopy, enzyme activity assay, and molecular docking.

Results: The tryptophan assay displayed a concentration-dependent decrease in tryptophan fluorescence, showing an interaction between BMA and HEWL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!