Studies of vowel systems regularly appeal to the need to understand how the auditory system encodes and processes the information in the acoustic signal. The goal of this study is to present computational models to address this need, and to use the models to illustrate responses to vowels at two levels of the auditory pathway. Many of the models previously used to study auditory representations of speech are based on linear filter banks simulating the tuning of the inner ear. These models do not incorporate key nonlinear response properties of the inner ear that influence responses at conversational-speech sound levels. These nonlinear properties shape neural representations in ways that are important for understanding responses in the central nervous system. The model for auditory-nerve (AN) fibers used here incorporates realistic nonlinear properties associated with the basilar membrane, inner hair cells (IHCs), and the IHC-AN synapse. These nonlinearities set up profiles of f0-related fluctuations that vary in amplitude across the population of frequency-tuned AN fibers. Amplitude fluctuations in AN responses are smallest near formant peaks and largest at frequencies between formants. These f0-related fluctuations strongly excite or suppress neurons in the auditory midbrain, the first level of the auditory pathway where tuning for low-frequency fluctuations in sounds occurs. Formant-related amplitude fluctuations provide representations of the vowel spectrum in discharge rates of midbrain neurons. These representations in the midbrain are robust across a wide range of sound levels, including the entire range of conversational-speech levels, and in the presence of realistic background noise levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581637 | PMC |
http://dx.doi.org/10.3758/s13414-018-01644-w | DOI Listing |
Sci Rep
January 2025
Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.
Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America.
Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA.
Profile-analysis experiments measure the ability to discriminate complex sounds based on patterns, or profiles, in their amplitude spectra. Studies of profile analysis have focused on normal-hearing listeners and target frequencies near 1 kHz. To provide more insight into underlying mechanisms, we studied profile analysis over a large target frequency range (0.
View Article and Find Full Text PDFNeuroradiology
December 2024
Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
Purpose: Objective information about the central auditory pathways in vestibular schwannoma can guide strategies for hearing rehabilitation and prognostication. This study aims to generate this information using diffusion tensor imaging (DTI).
Methods: This is a prospective observational single center study including 35 patients with vestibular schwannoma and 40 controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!