Disturbances in lipid composition and lipoproteins metabolism can play a crucial role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative diseases. The lipidomic strategy proposed here involves lipoprotein profiling using NMR spectroscopy and multivariate data pre-processing and analysis tools on 94 plasma samples (belonging to 38 early-stage PD patients, 10 PD-related dementia patients, 23 persons with Alzheimer's dementia, and 23 healthy control subjects) to firstly differentiate PD patients (irrespective of the stage of the disease) from persons with Alzheimer's disease (AD) as well as from controls, and then to discriminate among PD patients according to disease severity. The whole data set was subdivided into 86 training and 8 external test samples for validation purposes. A two-step classification scheme, based on linear discriminant analysis with variable selection accomplished by a stepwise orthogonalisation procedure, was proposed to optimise classification performance. Careful pre-processing of NMR signals was crucial to ensure data set quality. A total of 30 chemical shift buckets enabled differentiation between PD patients (regardless of disease severity), AD and control subjects, providing classification, cross-validation and external prediction rates of 100% in all cases. Only 15 variables were required to further discriminate between early-stage PD and PD-related dementia, again with 100% correct classifications, and internal/external predictions. The simplicity and effectiveness of the classification methodology proposed support the use of NMR spectroscopy, in combination with chemometrics, as a viable alternative diagnostic tool to conventional PD clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an01778fDOI Listing

Publication Analysis

Top Keywords

nmr spectroscopy
8
pd-related dementia
8
persons alzheimer's
8
control subjects
8
patients disease
8
disease severity
8
data set
8
disease
5
patients
5
nmr-based lipidomic
4

Similar Publications

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Background And Hypothesis: Convergent evidence shows the presence of brain metabolic abnormalities in psychotic disorders. This study examined brain reductive stress and energy metabolism in people with psychotic disorders with impaired or average range cognition. We hypothesized that global cognitive impairment would be associated with greater brain metabolic dysregulation.

View Article and Find Full Text PDF

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!