Novel yolk-shell-structured microspheres consisting of N-doped-carbon-coated metal-oxide hollow nanospheres are designed as efficient anode materials for lithium-ion batteries and synthesized via a spray pyrolysis process. A NiMoO4 yolk-shell architecture formed via spray pyrolysis is transformed into equally structured NiSe2-MoSe2 composite microspheres. Because of the complementary effect between the Ni and Mo components that prevents severe crystal growth during selenization, NiSe2-MoSe2 nanocrystals are uniformly distributed over the yolk-shell structure. Then, the yolk-shell-structured NiSe2-MoSe2 microspheres are oxidized, which yields microspheres composed of NiMoO4 hollow nanospheres by nanoscale Kirkendall diffusion. Uniform coating with polydopamine and a subsequent carbonization process produce uniquely structured microspheres consisting of N-doped-carbon-coated NiMoO4 hollow nanospheres. The discharge capacity of the yolk-shell-structured NiMoO4-C composite microspheres for the 500th cycle at a current density of 3.0 A g-1 is 862 mA h g-1. In addition, the NiMoO4-C composite microspheres show a high reversible capacity of 757 mA h g-1 even at an extremely high current density of 10 A g-1. The synergetic effect between the hollow nanospheres comprising the yolk-shell structure and the N-doped carbon coating layer results in the excellent lithium-ion storage performance of the NiMoO4-C composite microspheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr08638a | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:
Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT) Chennai, Vandalur - Kelambakkam Road, Chennai 600127, India.
Adv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!