Genomic biomarker of checkpoint efficacy, highways for precision medicine in lung cancer.

Oncotarget

Francois Ghiringhelli: Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, UNICANCER, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; INSERM U1231, Dijon, France; Genetic and Immunology Medical Institute, Dijon, France.

Published: November 2018

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290964PMC
http://dx.doi.org/10.18632/oncotarget.26389DOI Listing

Publication Analysis

Top Keywords

genomic biomarker
4
biomarker checkpoint
4
checkpoint efficacy
4
efficacy highways
4
highways precision
4
precision medicine
4
medicine lung
4
lung cancer
4
genomic
1
checkpoint
1

Similar Publications

The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.

View Article and Find Full Text PDF

Predicting the risks of progression to chronic kidney disease (CKD) stage 5 in idiopathic nephrotic syndrome (NS) and recurrence of the disease (rNS) following kidney transplantation (KT) is a key assessment to provide essential management information. NS has been categorized etiologically as genetic and immune-based. A genetic cause can be identified in ~ 30% of children with steroid-resistant NS (SRNS), a finding associated with a very low risk of rNS following KT.

View Article and Find Full Text PDF

Introduction: The regulation of expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most fatal cancer that has affected both male and female populations globally. With poor diagnosis and patient survival rates, it has become a global need for scientists to come to the aid. The main objective of the study was to profile the miRNAs in the serum of Control and DEN-treated mice at different time intervals (4 Weeks, 8 Weeks, 12 Weeks, and 16 Weeks) and identify HCC-associated miRNA as putative early biomarkers along with the miRNA regulated candidate gene which may be involved in HCC.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!