is the main cause for nosocomial antibiotic associated diarrhea and has become a major burden for the health care systems of industrial countries. Its main virulence factors, the small GTPase glycosylating toxins TcdA and TcdB, are extensively studied. In contrast, the contribution of other factors to development and progression of infection (CDI) are only insufficiently understood. Many bacterial peptidyl-prolyl-isomerases (PPIases) have been described in the context of virulence. Among them are the parvulin-type PrsA-like PPIases of Gram-positive bacteria. On this basis, we identified CD630_35000 as the PrsA2 homolog in and conducted its enzymatic and phenotypic characterization in order to assess its involvement during infection. For this purpose, wild type CdPrsA2 and mutant variants carrying amino acid exchanges mainly in the PPIase domain were recombinantly produced. Recombinant CdPrsA2 showed PPIase activity toward the substrate peptide Ala-Xaa-Pro-Phe with a preference for positively charged amino acids preceding the proline residue. Mutation of conserved residues in its active site pocket impaired the enzymatic activity. A PrsA2 deficient mutant was generated in the 630 background using the ClosTron technology. Inactivation of resulted in a reduced germination rate in response to taurocholic acid, and in a slight increase in resistance to the secondary bile acids LCA and DCA. Interestingly, in the absence of PrsA2 colonization of mice by 630 was significantly reduced. We concluded that CdPrsA2 is an active PPIase that acts as a virulence modulator by influencing crucial processes like sporulation, germination and bile acid resistance resulting in attenuated mice colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288519PMC
http://dx.doi.org/10.3389/fmicb.2018.02913DOI Listing

Publication Analysis

Top Keywords

virulence modulator
8
prsa2
4
prsa2 cd630_35000
4
cd630_35000 active
4
active parvulin-type
4
ppiase
4
parvulin-type ppiase
4
virulence
4
ppiase virulence
4
modulator main
4

Similar Publications

Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa.

J Hazard Mater

January 2025

Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:

Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.

View Article and Find Full Text PDF

PANoptosis in Bacterial Infections: A Double-Edged Sword Balancing Host Immunity and Pathogenesis.

Pathogens

January 2025

Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.

PANoptosis is a newly identified programmed cell death pathway that integrates characteristics of apoptosis, pyroptosis, and necroptosis. It plays a dual role in the host immune response to bacterial infections. On one hand, PANoptosis acts as a protective mechanism by inducing the death of infected cells to eliminate pathogens and releasing pro-inflammatory cytokines to amplify the immune response.

View Article and Find Full Text PDF

The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. , an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis.

View Article and Find Full Text PDF

The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria.

Int J Mol Sci

January 2025

Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.

Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors.

View Article and Find Full Text PDF

Background: Hazelnut (), a significant woody oil tree species in economic forests, faces production constraints due to biotic stresses, with Hazelnut Husk Brown Rot, caused by the pathogenic necrotrophic fungus (), being the most severe. To date, limited information is available regarding the resistance of hazelnuts to . To better understand the mechanisms of resistance to .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!