Discordant Responses to MAPK Pathway Stimulation Include Axonal Growths in Adult Photoreceptors.

Front Mol Neurosci

Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States.

Published: December 2018

Wallenda (WND) is the member of a conserved family of dual leucine-zipper kinases (DLK) active in both neuronal regeneration and degeneration. We examined the role of WND over-expression on sensory neuron morphology by driving WND in multiple subtypes of photoreceptors. WND overexpression under control of the pan-retinal GAL4 driver GMR causes multiple photoreceptor defects including cell death, rhabdomere degeneration, and axonal sprouting. Individual photoreceptor subtypes were assayed using GAL4 drivers specific for each photoreceptor class. Many R7 and R8 cells exhibit axonal sprouting while some show cell degeneration. Delaying the onset of WND overexpression until 20 days of age showed that older adult R7 cells retain the ability to initiate new axon growth. R1-6 photoreceptor cells degenerate in response to WND expression and exhibit rhodopsin loss and rhabdomere degeneration. RNAi knockdown of the MAPK signaling components Kayak (KAY) and Hemipterous (HEP) attenuates the WND-induced loss of Rh1 rhodopsin. UAS-induced HEP expression is similar to WND expression, causing degeneration in R1-6 photoreceptors and axonal sprouting in R7 photoreceptors. These results demonstrate that WND in adult photoreceptor cells acts through MAPK signaling activity with both regenerative and degenerative responses. These photoreceptors provide a tractable experimental model to reveal cellular mechanisms driving contradictory WND signaling responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288290PMC
http://dx.doi.org/10.3389/fnmol.2018.00441DOI Listing

Publication Analysis

Top Keywords

axonal sprouting
12
wnd
9
wnd overexpression
8
rhabdomere degeneration
8
photoreceptor cells
8
wnd expression
8
mapk signaling
8
photoreceptors
5
degeneration
5
photoreceptor
5

Similar Publications

Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.

View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!