The interaction between two small bubbles experiencing transient cavitation in a nonlinear Kelvin-Voigt fluid is investigated. The time-delay effect in the interaction is incorporated in the coupled Keller-Miksis model. The refined model predicts that bubbles with radii smaller than 2μm will be repelled by large bubbles, in contrast to predictions from previous models. The matching pressure needed to obtain same level of transient cavitation in different Kelvin-Voigt fluids is shown to depend mainly on the shear modulus and is insensitive to other parameters, which makes it a useful parameter to correlate the results. When the radii of the bubbles fall between 4μm and 6μm, the secondary Bjerknes force obtained with matching pressures shows only weak dependence on the shear modulus. For the pressure amplitudes investigated, equilibrium distances can be found between two bubbles when the equilibrium radius of one of the bubbles is in a narrow range around 2 μm. The equilibrium distance decreases when the shear modulus is increased. A simple relation between the two quantities is established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2018.12.007DOI Listing

Publication Analysis

Top Keywords

shear modulus
12
secondary bjerknes
8
bjerknes force
8
transient cavitation
8
bubbles
7
force oscillating
4
oscillating bubbles
4
bubbles kelvin-voigt-type
4
kelvin-voigt-type viscoelastic
4
viscoelastic fluids
4

Similar Publications

Objectives: To determine the efficacy of quantitative shear wave elastography in differentiating benign and malignant axillary lymph nodes (ALN).

Methods: Exactly 127 lymph nodes from 127 patients with clinically palpable axillary swelling were examined by both B-mode sonography and elastography from November 2022 to March 2024. Gray-scale sonograms were evaluated based on: the short-axis diameter, shape, hilum, maximum cortical thickness, and border of the ALN.

View Article and Find Full Text PDF

Shear wave elastography reveals passive and active mechanics of triceps surae muscles in vivo: From shear modulus-ankle angle to stress-strain characteristics.

J Appl Physiol (1985)

January 2025

Experimental Biomechanics Group, Institute of Structural Mechanics and Dynamics in Aerospace Engineering, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Germany.

Characterizing individual muscle behavior is crucial for understanding joint function and adaptations to exercise, diseases, or aging. Shear wave elastography (SWE) is a promising tool for measuring the intrinsic material properties of muscle. This study assessed the passive and active shear modulus of the triceps surae muscle group in 14 volunteers (7 females, 25.

View Article and Find Full Text PDF

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.

View Article and Find Full Text PDF

Joint Analysis of Cardiovascular Control and Shear Wave Elastography to Determine Carotid Plaque Vulnerability.

J Clin Med

January 2025

Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.

: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!