Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The great number of internal migrants has become an important part of China's urban population. Improving migrants' well-being is emerging as a key to the state policy emphasized in China's New-type Urbanization Plan. Previous studies on subjective well-being (SWB) have primarily focused on the impacts of objective measures of community environment and consider migrants as a homogeneous group. This study extends the literature by exploring the impacts of perceived community environment on migrants' SWB and incorporating cohort differences in the analysis.
Methods: We use the 2015 national scale data-China Household Financial Survey (CHFS) data-to analyse the different forms of community environmental satisfaction and their impacts on migrants' subjective well-being. A total of 12,607 migrants were sampled from 29 of mainland China's 31 provinces. Latent class analysis is applied to explore the potential forms of community environmental satisfaction; multinomial and ordinal logistic regression models are constructed to examine the sociodemographic characteristics of different forms of community environmental satisfaction and the association between community environmental satisfaction and subjective well-being among migrant cohorts in urban China.
Results: Latent class analysis defines four distinctive latent classes, which mirror four different domains of migrants' perception of their local environments. They are called 'unsatisfying local environment', 'satisfying social environment', 'satisfying physical environment', and 'satisfying social life'. Results from the multinomial logistic regression model reveals that the four forms of community environmental satisfaction are underpinned by distinct sociodemographic characteristics. Results from a series of ordinal logistic regression models show that different forms of community environmental satisfaction, in particular satisfaction with the physical environment and with social life, are positively associated with migrants' happiness. The model results also suggest that cohort differences do exist among migrants. The positive effect of a satisfying physical environment on happiness tends to be greater in younger cohorts, while the positive effect of a satisfying social life on SWB is more observable in older cohorts.
Conclusion: Satisfaction with community environment has a salient impact on urban Chinese migrants' happiness. For their SWB, improving migrants' physical living environments and social lives is relatively more important than social environment, which in a way mirrors migrants' current status with its deficiencies in terms of a comfortable living environment and social life. Moreover, there exist cohort differences that should be considered when making policies to enhance migrants' subjective well-being.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299652 | PMC |
http://dx.doi.org/10.1186/s12955-018-1061-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!