Laser-induced graphene (LIG) has both good electrical conductivity and three-dimensional porous structures. Here, porous graphene interdigital electrodes (IDE) were constructed as a capacitive sensor from commercial polymer films by the laser ablation process and transferred to the polydimethylsiloxane (PDMS) substrate. The graphene oxide (GO) adsorption layer was electrosprayed as a humidity sensing structure, and a Peltier device was used to control the temperature to produce the condensation of water vapors. The dew point was identified by the equilibrium state of the capacitor when the adsorption layer and the surface air reached the saturation equilibrium. The performances of the hydrophilic dew point sensing system under different environmental conditions were investigated. The results show that the precision of the carbon-based dew point sensor of ≤±0.8 °C DP with good stability and repeatability is better than those of other dew point instrument based on electrical sensing parameters at ±1.0 °C DP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b18538DOI Listing

Publication Analysis

Top Keywords

dew point
20
capacitive sensor
8
adsorption layer
8
dew
5
point measurement
4
measurement carbon-based
4
carbon-based capacitive
4
sensor active
4
active temperature
4
temperature control
4

Similar Publications

Air pollution is a significant challenge in metropolitan areas, where increasing amounts of air pollutants threaten public health and environmental safety. The present study aims to forecast the concentrations of various air pollutants, including CO, O, NO, SO, PM, and PM, from 2013 to 2023 in the Tehran megacity, Iran, via deep learning (DL) models and evaluate their effectiveness over conventional machine learning (ML) methods. Key driving variables, including temperature, relative humidity, dew point, wind speed, and air pressure, were considered.

View Article and Find Full Text PDF

Study on performance of perforated dew point indirect : Evaporative coolers.

Sci Rep

January 2025

College of Art and Design, Sichuan Tourism University, No.459, Hongling Road, Longquanyi District, Chengdu City, 610100, Sichuan Province, China.

The Maisotsenko cycle-based coolers have gained increasing attention in recent years due to their advantages of low energy consumption and environmental friendliness. Optimizing the model structure and operating conditions is the primary approach for enhancing the cooling performance of dew-point evaporation systems. In this paper, a novel mathematical model of the perforated dew-point evaporative cooler was developed to investigate its cooling performance.

View Article and Find Full Text PDF

The BZ gas field is the first large gas field in the Bohai Sea of China, with reserves of 100 billion cubic meters. Its formal operation can greatly promote local green and low-carbon development. However, the condensate gas reservoir has characteristics such as a large burial depth, a steep temperature and pressure gradient, high condensate content, developed microfractures, and a small pressure difference between the surface and dew point.

View Article and Find Full Text PDF

: Respiratory viral infections (RVIs) exhibit seasonal patterns influenced by biological, ecological, and climatic factors. Weather variables such as temperature, humidity, and wind impact the transmission of droplet-borne viruses, potentially affecting disease severity. However, the role of climate in predicting complications in pediatric RVIs remains unclear, particularly in the context of climate-change-driven extreme weather events.

View Article and Find Full Text PDF

Confined phase behavior of subcritical carbon dioxide in nanoporous media: the effects of pore size and temperature.

Phys Chem Chem Phys

January 2025

Center of Innovation for Flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.

This study investigates the effect of confinement on the phase behavior of carbon dioxide (CO) and its implications for storage in nanometer-scale pores. A patented gravimetric apparatus was employed to experimentally measure the adsorption and desorption isotherms at varying pore sizes and temperatures. The isotherms were generated at temperatures below the critical point of CO (from -23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!