Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315689 | PMC |
http://dx.doi.org/10.3390/nano8121009 | DOI Listing |
Luminescence
December 2024
Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
The production of nanoparticles via green methods is a developing study domain due to potential environmental applications. The green synthesis method is very easy, less toxic and eco-friendly when compared to the chemical synthesis method. This study addresses the silver nanoparticle synthesis utilizing the Acorus calamus leaf extract, which was then employed for environmental applications.
View Article and Find Full Text PDFHeliyon
December 2024
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Str. 18, 420008 Kazan, Russia.
The development of multidrug resistance by pathogenic bacteria and yeast is a significant medical problem that needs to be addressed. One possible answer could be the combined use of antibiotics and silver nanoparticles, which have different mechanisms of antimicrobial action. In the same way, these nanoparticles can be combined with antifungal agents.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Environmental Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67000, Turkey.
The choice of plant species is crucial, as different plants provide unique biomolecules that influence nanoparticle characteristics. Biomolecules in plant extracts, such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids, and vitamins, act as stabilizing and reducing agents. This study explores the synthesis of silver nanoparticles (AgNPs) using leaf extracts from collard greens ( var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!