Fragile X syndrome (FXS) is the leading known cause of inherited intellectual disability and autism spectrum disorder. It is caused by a mutation of the fragile X mental retardation 1 () gene, resulting in a deficit of fragile X mental retardation protein (FMRP). The clinical presentation of FXS is variable, and is typically associated with developmental delays, intellectual disability, a wide range of behavioral issues, and certain identifying physical features. Over the past 25 years, researchers have worked to understand the complex relationship between FMRP deficiency and the symptoms of FXS and, in the process, have identified several potential targeted therapeutics, some of which have been tested in clinical trials. Whereas most of the basic research to date has been led by experts at academic institutions, the pharmaceutical industry is becoming increasingly involved with not only the scientific community, but also with patient advocacy organizations, as more promising pharmacological agents are moving into the clinical stages of development. The objective of this review is to provide an industry perspective on the ongoing development of mechanism-based treatments for FXS, including identification of challenges and recommendations for future clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315847PMC
http://dx.doi.org/10.3390/brainsci8120214DOI Listing

Publication Analysis

Top Keywords

fragile syndrome
8
industry perspective
8
intellectual disability
8
fragile mental
8
mental retardation
8
clinical trials
8
clinical
5
clinical development
4
development targeted
4
fragile
4

Similar Publications

Introduction: Musculocontractural Ehlers-Danlos syndrome (mcEDS) is a rare autosomal recessive connective tissue disorder caused by systemic depletion of dermatan sulfate. Symptoms characteristic of mcEDS include multiple contractures, fragile skin with subcutaneous bleeding, and hypermobile joints, which suggest difficulty in perioperative management. However, safe surgical techniques and perioperative management of this disorder remain unknown because of its rarity.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results.

View Article and Find Full Text PDF

Mutations in the collagen-modifying enzyme lysyl hydroxylase 1 (LH1) cause Warmblood Fragile Foal Syndrome (WFFS) in horses. We investigated the impact of this mutation on collagen structure and function. Our results show that LH1 deficiency leads to reduced lysine hydroxylation, altered collagen fibril organization, and tissue abnormalities resembling human Ehlers-Danlos syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!