The freezing tolerance of roots is crucial for winter turnip rape ( L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321220PMC
http://dx.doi.org/10.3390/ijms19124077DOI Listing

Publication Analysis

Top Keywords

winter turnip
16
freezing tolerance
12
turnip rape
12
freezing stress
12
cold acclimation
8
molecular mechanisms
8
tolerance winter
8
proteins up-
8
up- down-accumulated
8
freezing
7

Similar Publications

Plant growth-promoting bacteria (PGPB) are among the most promising alternatives to mineral fertilizers. However, little is known about the effects of applied bacteria on the native microbiota, including the rhizobacterial community, which plays a crucial role in bacteria-plant interactions. Therefore, this study is aimed at assessing the effects of PGPB not only on plants but also, importantly, on the native rhizobacterial community of winter oilseed rape.

View Article and Find Full Text PDF

Winter oilseed rape (WOSR, L.) is the third largest oil crop worldwide that also provides a source of high quality plant-based proteins. Nitrogen (N) and carbon (C) play a key role in plant growth.

View Article and Find Full Text PDF

Winter rapeseed is a high-oil crop that exhibits significant sensitivity to low temperatures, leading to a substantial reduction in production. Hence, it is of great significance to elucidate the genomic genetic mechanism of strong freezing-resistant winter rapeseed to improve their freezing-resistant traits. In this study, global transcriptome expression profiles of the freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained for the years 2015, 2016, and 2017 by RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Strip grazing can increase forage utilization, though it has been shown to decrease individual animal performance. The objective of this study was to evaluate forage utilization and cattle performance when strip grazing () vs. continuously grazing () stockpiled annual forages.

View Article and Find Full Text PDF

Winter oilseed rape ( L.), the principal oilseed crop in Europe, is notably vulnerable to spring frosts that can drastically reduce yields in ways that are challenging to predict with standard techniques. Our research focused on evaluating the efficacy of photosynthetic efficiency analysis in this crop and identifying specific chlorophyll fluorescence parameters severely impacted by frost, which could serve as noninvasive biomarkers for yield decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!