Background: In this study, we evaluated the clinical efficacy of a biodegradable nerve conduit constructed of polyglycolic acid (PGA) tube with external and internal collagen scaffolding for digital nerve repair.
Patients And Methods: A multi-center registry study was conducted in 11 locations between July 2013 and May 2016. Multiple mechanisms of injury included clean-cut (12 patients), crush (5 patients), and avulsion (3 patients) types of injuries. These patients underwent nerve repair with a biodegradable nerve conduit, with 9 patients having a primary repair and 11 patients having delayed repair. Average nerve gap was 16.7 mm (range: 1-50 mm). An average of 13 months follow-up (range: 12-15 months) was available including sensory assessments.
Results: Improved s2PD was found with less severe injury as in clean-cut (7.5 ± 1.5 mm), which was statistically significant in comparison to those in crush (9.8 ± 1.9 mm, P = .0384) and in avulsion (10.7 ± 4.7 mm, P = .0013) type injuries. A meaningful recovery (S3+ or S4) was observed in 90% of the 20 digital nerve repairs with a biodegradable nerve conduit of PGA with external and internal collagen scaffolding. Avulsion injuries had significantly lower levels of meaningful recovery (67%) in comparison to those of clean-cut (P = .0291) and crush (P = .0486) types of injury. No adverse effects were reported postoperatively.
Conclusion: These results indicate that a biodegradable nerve conduit of PGA with external and internal collagen scaffolding is suitable for digital nerve repair of short nerve gaps with high levels of sensory recovery as measured by two-point discrimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/micr.30417 | DOI Listing |
Nat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFSci Rep
December 2024
University of Jammu, Jammu and Kashmir, 180006, India.
Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.
View Article and Find Full Text PDFNat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFNat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!