Background: Acute myocardial infarction (AMI) is followed by an acute inflammation involving inflammasome activation, thereby inducing cardiac dysfunction. Interleukin-17A (IL-17A) involves in many inflammatory diseases, but its roles in inflammation following AMI are still obscure. The aim of this study is to investigate the roles of IL-17A in the inflammatory response following AMI and its underlying mechanisms.
Methods And Results: NLRP3 inflammasome and AMPKα/p38MAPK/ERK1/2 signaling pathway were significantly activated under the induction of IL-17A in mouse peritoneal macrophages, which could be inhibited by AMPK inhibitor compound C (CC). Both p38MAPK and ERK1/2 inhibitors could partially inhibit the activation of NLRP3 inflammasome in macrophages treated by IL-17A. In vivo, IL-17A knockout not only decreased the infiltration of macrophages and the activation of NLRP3 inflammasome and AMPKα/p38MAPK/ERK1/2 signaling pathway in ischemic myocardium, but also improved cardiac function and reduced infarction size after the ligation of descending segment from left coronary artery for 3 days in mice, while IL-17A administration further aggravated the myocardial ischemic injury, which were prevented by CC administration.
Conclusion: IL-17A aggravates inflammatory response during AMI by inducing macrophages infiltration and activating NLRP3 inflammasome through AMPKα/p38MAPK/ERK1/2 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2018.12.014 | DOI Listing |
Ann Transl Med
December 2024
Department of Rehabilitation Medicine, Department of Sports Medicine, Institute of Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
[This retracts the article DOI: 10.21037/atm-22-5443.].
View Article and Find Full Text PDFImmunometabolism (Cobham)
January 2025
Institute for Systems Biology, Seattle, WA, USA.
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.
Background And Purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.
Experimental Approach: A POCD mouse model was established and intraperitoneally injected with Dex.
Nat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFImmunity
January 2025
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Mitochondria play critical roles in intrinsic apoptosis and NLRP3 inflammasome activation, but how these processes are interconnected remains unclear. In this issue of Immunity, Saller et al. unveiled the complexity of NLRP3 activators, highlighting mitochondria's roles in switching apoptosis to NLRP3 inflammasome activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!