A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting synchrony in EEG: A comparative study of functional connectivity measures. | LitMetric

Detecting synchrony in EEG: A comparative study of functional connectivity measures.

Comput Biol Med

College of Science and Engineering, Flinders University, Adelaide, Australia; Medical Device Research Institute, Flinders University, Adelaide, Australia.

Published: February 2019

In neuroscience, there is considerable current interest in investigating the connections between different parts of the brain. EEG is one modality for examining brain function, with advantages such as high temporal resolution and low cost. Many measures of connectivity have been proposed, but which is the best measure to use? In this paper, we address part of this question: which measure is best able to detect connections that do exist, in the challenging situation of non-stationary and noisy data from nonlinear systems, like EEG. This requires knowledge of the true relationship between signals, hence we compare 26 measures of functional connectivity on simulated data (unidirectionally coupled Hénon maps, and simulated EEG). To determine whether synchrony is detected, surrogate data were generated and analysed, and a threshold determined from the surrogate ensemble. No measure performed best in all tested situations. The correlation and coherence measures performed best on stationary data with many samples. S-estimator, correntropy, mean-phase coherence (Hilbert), mutual information (kernel), nonlinear interdependence (S) and nonlinear interdependence (N) performed most reliably on non-stationary data with small to medium window sizes. Of these, correlation and S-estimator have execution times that scale slower with the number of channels and the number of samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.12.005DOI Listing

Publication Analysis

Top Keywords

functional connectivity
8
performed best
8
nonlinear interdependence
8
data
5
detecting synchrony
4
eeg
4
synchrony eeg
4
eeg comparative
4
comparative study
4
study functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!