Paradoxically, some insects have an increased capacity to survive higher temperatures in winter than summer. Possible contributors to this increased heat tolerance in winter could be their sub-zero adaptations (high polyol concentrations, antifreeze proteins, antifreeze glycolipids, etc.). To investigate if a sub-zero adaptation can increase organismal high temperature survivorship, we tested transgenic fruit flies, Drosophila melanogaster, with antifreeze proteins from the fire-colored beetle, Dendroides canadensis (DAFPs). Transgenic Drosophila melanogaster with individual DAFPs-1 and -4 had increased survivorship compared to control flies after 24 h when placed at 35-36.5 °C. The 24 h ULT (Upper Lethal Temperature at which 50% mortality occurred) was calculated to be 36.3 °C for DAFP-1 flies, 36.2 °C for DAFP-4 flies, 35.4 °C for wild-type controls, and 34.9 °C for GAL4 controls. The results indicate that DAFPs may have an alternative function in insects and be a contributor in the unexpected phenomenon of increased higher temperature survivorship in winter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2018.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!