The presence of ethanol in gastrointestinal (GI) fluids may increase the solubility of poorly water-soluble drugs. This suggests that intake of ethanol with such compounds could result in increased drug absorption in the stomach and duodenum because of the greater concentration gradient present. To test this hypothesis, in vitro dissolution of 2 poorly soluble compounds (indomethacin and felodipine) was studied in simulated GI rat fluids in the presence or absence of ethanol. Results were used to predict plasma exposure of the compounds using the software PK-Sim. Finally, in vivo plasma exposure in rats was investigated after oral dosing followed by immediate administration of water or ethanol. Despite increased solubility in GI fluids in the presence of ethanol, simulations predicted a negligible effect on absorption. This was confirmed in the rat study where oral intake of indomethacin or felodipine with ethanol did not increase in vivo plasma exposure. A possible explanation for the lack of an effect may be that dilution, absorption, and transfer of ethanol upon arrival in the stomach resulted in intragastric and intraduodenal ethanol concentrations that did not reach the levels required to affect local solubility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2018.12.006 | DOI Listing |
J Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Biology, Hamilton College, Clinton, NY, USA.
Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.
View Article and Find Full Text PDFClin Pharmacokinet
January 2025
Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France.
Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.
Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.
J Pharm Sci
January 2025
Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Princeton, NJ, USA.
Iberdomide, a novel potent cereblon E3 ligase modulator, is under investigation for multiple myeloma. This study assessed how renal impairment (RI) affects iberdomide pharmacokinetics (PK). Twenty-six subjects with varying renal function, including those with severe renal impairment and those requiring intermittent hemodialysis (IHD), received a single oral 1 mg dose of iberdomide.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China. Electronic address:
Epidemiological studies have reported that atmospheric particulate matter (PM) contributes to ischemic stroke (IS). Biological studies also indicated that the pathway where PM induces IS involves several pathological processes. Moreover, exposure to PM can alter the expression of specific microRNAs (miRNAs) and ultimately accelerate the onset of IS by regulating related pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!