Penicillium spp. cause blue mold of stored pome fruit. These fungi reduce fruit quality and produce mycotoxins that are regulated for processed fruit products. Control of blue mold is achieved by fungicide application, and in 2015 Academy (active ingredients fludioxonil and difenoconazole) was released for use on pome fruit to manage postharvest blue mold. Baseline sensitivity for fludioxonil but not difenoconazole has been determined for P. expansum. To establish the distribution of sensitivity to difenoconazole before commercial use of Academy, 97 unexposed single-spore isolates from the United States and abroad were tested in vitro. Baseline EC values ranged from 0.038 to 0.827 µg/ml of difenoconazole with an average of 0.16 µg/ml. Complete inhibition of mycelial growth for all but three isolates occurred at 5 µg/ml of difenoconazole, whereas 10 µg/ml did not support growth for any of the isolates examined. Hence, 5 µg/ml of difenoconazole is recommended for phenotyping Penicillium spp. isolates with reduced sensitivity. Isolates with resistance to pyrimethanil and to both thiabendazole and pyrimethanil were observed among the isolates from the baseline collection. Academy applied at the labeled rate had both curative and protectant activities and controlled four representative Penicillium spp. from the baseline population. This information can be used to monitor future shifts in sensitivity to this new postharvest fungicide in Penicillium spp. populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-05-18-0860-RE | DOI Listing |
Plant Dis
January 2025
USDA ARS, Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, Idaho, United States, 83341;
Sugar beet roots in Idaho are held under ambient conditions in outdoor storage piles which can lead to fungal growth and rot and substantial sucrose loss. Thus the incidence, distribution, and pathogenicity of fungi associated with fungal growth on the surface of sugar beet roots on top of outdoor piles was investigated. The surface fungal growth on sugar beet roots held on top of 14 Idaho outdoor piles [tarped ventilated (TV) piles and piles with no tarps or ventilation (NTV) at 7 locations] was assessed in 2018-19 and 2019-20.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada.
Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS, US Arid Land Agricultural Research Center, 21881 North Cardon Lane Maricopa, Maricopa, AZ 85138, USA.
As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.
View Article and Find Full Text PDFItal J Food Saf
November 2024
Plant Pathology and Postharvest Quality Laboratory, Regional Center for Agronomical Research of Kenitra, Morocco.
Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.
View Article and Find Full Text PDFPathogens
November 2024
National Public Health and Pharmaceutical Centre, 1097 Budapest, Hungary.
The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!