A Deep Intronic Variant in LDLR in Familial Hypercholesterolemia.

Circ Genom Precis Med

Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands (L.F.R., M.L.H., G.M.D.-T., G.K.H.).

Published: December 2018

AI Article Synopsis

  • Familial hypercholesterolemia (FH) is a genetic disorder leading to high LDL cholesterol levels, typically caused by mutations in specific genes; however, this study identifies a novel intronic mutation in LDLR in a family where common mutations were not found.
  • Whole genome sequencing was performed on both affected and unaffected family members to trace the genetic cause of FH, revealing a mutation that disrupts splicing and results in a defective LDLR protein.
  • The identified mutation, c.2140+103G>T, was shown to be linked to the FH phenotype in multiple family generations, highlighting the importance of examining non-coding regions of related genes for unexplained FH cases.

Article Abstract

Background: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high plasma LDL-C (low-density lipoprotein-cholesterol) levels. The vast majority of FH patients carry a mutation in the coding region of LDLR, APOB, or PCSK9. We set out to identify the culprit genetic defect in a large family with clinical FH, in whom no mutations were identified in the coding regions of these FH genes.

Methods: Whole genome sequencing was performed in 5 affected and 4 unaffected individuals from a family with an unexplained autosomal dominant FH trait. The effect on splicing of the identified novel intronic LDLR mutation was ascertained by cDNA sequencing. The prevalence of the novel variant was assessed in 1 245 FH patients without an FH causing mutation identified by Sanger sequencing and in 2 154 patients referred for FH analysis by next-generation sequencing (covering the intronic region).

Results: A novel deep intronic variant in LDLR (c.2140+103G>T) was found to cosegregate with high LDL-C in 5 patients, but was not present in 4 unaffected family members. The variant was shown to result in a 97 nucleotides insertion leading to a frameshift and premature stop codon in exon 15 of LDLR. The prevalence of the intronic variant was 0.24% (3/1245) in a cohort of FH patients without a known FH causing mutation and 0.23% (5/2154) in a population of FH patients referred for analysis by next-generation sequencing. Cosegregation analysis of a second family showed full penetrance of the novel variant with the FH phenotype over 3 generations.

Conclusions: The c.2140+103G>T mutation in LDLR is a novel intronic variant identified in FH that cosegregates with the FH phenotype. Our findings underline the need to analyze the intronic regions of LDLR in patients with FH, especially those in whom no mutation is found in the coding regions of LDLR, APOB, or PCSK9.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002385DOI Listing

Publication Analysis

Top Keywords

intronic variant
16
deep intronic
8
ldlr
8
variant ldlr
8
familial hypercholesterolemia
8
mutation coding
8
ldlr apob
8
apob pcsk9
8
coding regions
8
novel intronic
8

Similar Publications

Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance.

View Article and Find Full Text PDF

Hemophilia A (HA) is an X-chromosome-linked recessive genetic disorder. Female carriers may have bleeding symptoms, but rarely have moderate or severe disease. We identified a female patient with moderate HA by pedigree tracking and genetic testing in a HA family involving consanguineous marriage.

View Article and Find Full Text PDF

Background: Current clinical sequencing methods cannot effectively detect DNA methylation and allele-specific variation to provide parent-of-origin information from the proband alone. Parent-of-origin effects can lead to differential disease and the inability to assign this in de novo cases limits prognostication in the majority of affected individuals with retinoblastoma, a hereditary cancer with suspected parent-of-origin effects.

Methods: To directly assign parent-of-origin in retinoblastoma patients, genomic DNA was extracted from blood samples for sequencing using a programmable, targeted single-molecule long-read DNA genomic and epigenomic approach.

View Article and Find Full Text PDF

Trifunctional protein deficiency (TFP) is a disorder of fatty acid beta-oxidation associated with metabolic, cardiac, and liver dysfunction in severe forms. We present two siblings diagnosed by newborn screening and confirmed by biochemical testing at birth. Their clinical course was complicated by recurrent rhabdomyolysis, retinopathy, and hypoparathyroidism.

View Article and Find Full Text PDF

Manul () is the only representative of the genus which makes up the Leopard Cat lineage along with the genus . Their habitat is characterized by harsh environmental conditions. Although their populations are probably more stable than previously thought, it is still the case that their population size is declining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!