Designed and Evolved Nucleic Acid Nanotechnology: Contrast and Complementarity.

Bioconjug Chem

Department of Chemistry , University of Idaho, 001 Renfrew Hall, 875 Perimeter Drive , Moscow , Idaho 83844-2343 , United States.

Published: January 2019

In this review, we explore progress on DNA aptamers (evolved DNA), DNA circuits (designed DNA), and the newest projects that integrate both. Designed DNA nanotechnology includes static nanostructures, dynamic nanodevices, and reaction networks (sometimes called DNA circuits). DNA circuits are dynamic DNA reactions that perform computations and sequence-specific amplification. Directed evolution can be used to produce DNA that can recognize specific targets. Aptamers are evolved nucleic acids; they are produced artificially with an in vitro selection process. DNA aptamers are molecular recognition elements made of single-stranded DNA (ssDNA) with the potential to interact with proteins, small molecules, viruses, and even cells. Designed molecular structures can incorporate aptamers for applications with immediate practical impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938684PMC
http://dx.doi.org/10.1021/acs.bioconjchem.8b00810DOI Listing

Publication Analysis

Top Keywords

dna circuits
12
dna
11
evolved nucleic
8
dna aptamers
8
aptamers evolved
8
designed dna
8
designed
4
designed evolved
4
nucleic acid
4
acid nanotechnology
4

Similar Publications

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

Platelet-derived growth factor-BB (PDGF-BB), an important protein biomarker, is closely associated with tumorigenesis. Therefore, it is important to develop a simple and sensitive method to detect PDGF-BB. Herein, we developed a dual recycling signal amplification strategy for colorimetric and sensitive detection of PDGF-BB using a PDGF-BB specific aptamer.

View Article and Find Full Text PDF

Replication protein A (RPA) is a heterotrimeric single-strand DNA binding protein that is integral to DNA metabolism. Segregation of RPA functions in response to DNA damage is fine-tuned by hyperphosphorylation of the RPA32 subunit that is dependent on Cyclin-dependent kinase (Cdk)-mediated priming phosphorylation at the Ser-23 and Ser-29 sites. However, the mechanism of priming-driven hyperphosphorylation of RPA remains unresolved.

View Article and Find Full Text PDF

Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!