A COMPARISON OF DIFFERENT SPECTRA DECONVOLUTION METHODS USED IN EPR DOSIMETRY WITH GORILLA® GLASSES.

Radiat Prot Dosimetry

Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, USA.

Published: December 2019

Two different spectra deconvolution methods have been compared on samples of Gorilla® Glass (GG) irradiated in the dose range 0-20 Gy and measured with X-band EPR. The first method used a matrix deconvolution procedure using sample-specific sets of reference signals. The second method used a 'universal' set of eight reference signals (due to five electron centers, two hole centers and a background) to fit EPR spectra from any GG sample. Dose-responses curves were constructed for each individual reference signal. These were then used to test reconstruction of a laboratory-administered dose of 2 Gy. For the matrix method, the values of the reconstructed and nominal doses were within ± 20% after averaging measurements from three aliquots of each sample. For the universal method, the most promising results were obtained with E1, E4 and H1 signals. The fitting failed for one sample, due to dominance of the background signal.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncy260DOI Listing

Publication Analysis

Top Keywords

spectra deconvolution
8
deconvolution methods
8
reference signals
8
comparison spectra
4
methods epr
4
epr dosimetry
4
dosimetry gorilla®
4
gorilla® glasses
4
glasses spectra
4
methods compared
4

Similar Publications

Rigorous Analysis of Multimodal HDX-MS Spectra.

J Am Soc Mass Spectrom

January 2025

Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States.

An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations.

View Article and Find Full Text PDF

Glow Discharge Optical Emission Coded Aperture Spectroscopy.

Anal Chem

January 2025

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.

Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.

View Article and Find Full Text PDF

An applied noise model for low-loss EELS maps.

Ultramicroscopy

January 2025

Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, Paderborn, 33098, Germany. Electronic address:

Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise.

View Article and Find Full Text PDF

Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.

View Article and Find Full Text PDF

Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!