Background And Aims: Micronutrient deficiency in cereals is a problem of global significance, severely reducing grain yield and quality in marginal soils. Ancient landraces represent, through hundreds of years of local adaptation to adverse soil conditions, a unique reservoir of genes and unexplored traits for enhancing yield and abiotic stress tolerance. Here we explored and compared the genetic variation in a population of Northern European barley landraces and modern elite varieties, and their tolerance to manganese (Mn) limitation.
Methods: A total of 135 barley accessions were genotyped and the genetic diversity was explored using Neighbor-Joining clustering. Based on this analysis, a sub-population of genetically diverse landraces and modern elite control lines were evaluated phenotypically for their ability to cope with Mn-deficient conditions, across three different environments increasing in complexity from hydroponics through pot experiments to regional field trials.
Key Results: Genetically a group of Scottish barley landraces (Bere barley) were found to cluster according to their island of origin, and accessions adapted to distinct biogeographical zones with reduced soil fertility had particularly larger Mn, but also zinc (Zn) and copper (Cu) concentrations in the shoot. Strikingly, when grown in an alkaline sandy soil in the field, the locally adapted landraces demonstrated an exceptional ability to acquire and translocate Mn to developing leaves, maintain photosynthesis and generate robust grain yields, whereas modern elite varieties totally failed to complete their life cycle.
Conclusions: Our results highlight the importance of gene pools of local adaptation and the value of ancient landrace material to identify and characterize genes that control nutrient use efficiency traits in adverse environments to raise future crop production and improve agricultural sustainability in marginal soils. We propose and discuss a model summarizing the physiological mechanisms involved in the complex trait of tolerance to Mn limitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526322 | PMC |
http://dx.doi.org/10.1093/aob/mcy215 | DOI Listing |
Curr Issues Mol Biol
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Pennsylvania State University, University Park, PA 16802.
Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols would sharply reduce temperature and solar radiation reaching the earth's surface, decreasing crop productivity including for locally adapted traditional crop varieties, i.e.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Aula Dei Experimental Station, EEAD, CSIC, Zaragoza, Spain.
Plant Genome
December 2024
USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA.
Plants (Basel)
October 2024
Department of Medical-Surgical and Complementary Sciences, College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, University 13, 720229 Suceava, Romania.
Nowadays, there is a general concern regarding the increasing global talk about functional foods that respond to our demands and needs as consumers in order to maintain health and body weight through a correctly balanced diet. Cereals are key elements of nutrition and a healthy diet, and they also play a significant role in health promotion due to the useful nutrient content. Therefore, this work aims to identify barley and oat genotypes suitable for human nutrition and to achieve practical results for their widespread use in preventing or treating certain chronic diseases by analyzing the nutritional and physical properties of 52 genotypes of oat and barley conserved in Suceava Gene Bank, Romania.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!