Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for the treatment of patients with antiepileptic drug-resistant (intractable) epilepsy. This clinical need is only partially fulfilled through a subjective, and at times inconclusive, the evaluation of the recorded electroencephalogram (EEG) at seizures' onset (the so-called gold standard for focus localization in epilepsy). We herein present a novel method of multivariate analysis of the EEG that appears to be very promising for an objective and robust localization of the epileptogenic focus at seizures' onset. Using the measure of generalized partial directed coherence, combined with surrogate data analysis, we first estimated from multichannel intracranial EEG the statistically significant causal interactions between brain regions at the onset of 92 clinical seizures from nine patients with temporal lobe intractable epilepsy. From the networks that were formed based on the thus derived interactions, a set of centrality metrics was estimated per network node (brain site). Brain sites located anatomically within the epileptogenic focus were shown to be associated with greater inward centrality values than non-focal brain regions at high frequencies ( γ band), and particular inward centrality metrics accurately localized the focus in all nine patients. In addition to focus localization from seizure (ictal) onset, the developed novel framework for analysis of EEG could be employed to identify the changes of the focal network over time, peri-ictally and interictally, and thus shed light onto the dynamics of ictogenesis, which could then have a significant impact on automated prediction and closed-loop control of seizures by neuromodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2018.2886211DOI Listing

Publication Analysis

Top Keywords

epileptogenic focus
16
focus localization
12
intractable epilepsy
8
seizures' onset
8
analysis eeg
8
brain regions
8
centrality metrics
8
focus
7
brain
5
connectivity centrality
4

Similar Publications

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects.

View Article and Find Full Text PDF

Nuclear Medicine Imaging in Epilepsy.

Radiographics

January 2025

From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219 (A.S., A.T.T., B.W.M., L.L.W., J.L.S.); and Department of Radiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH (A.T.T.).

Approximately one-third of patients with focal epilepsy have medically refractory focal epilepsy (MRFE), which significantly impacts their quality of life. Once a seizure focus is identified and determined to be in the noneloquent cortex, it can be surgically resected with the goal of freedom from seizures and minimal neurocognitive deficit. During noninvasive (phase I) presurgical planning, functional (nuclear) imaging and structural imaging are complementary in the accurate localization of the epileptogenic zone (EZ).

View Article and Find Full Text PDF

Early detection of focal cortical dysplasia (FCD) using brain MRI in young children presenting with drug-resistant epilepsy may facilitate prompt surgical treatment, resulting in better control of seizures and decreased associated cognitive difficulties. Characteristics of FCD described in the literature are predominantly based on MRI findings in a fully myelinated brain; therefore, changes occurring during early brain maturation are not well known. In this case report, we describe distinct MRI features of a FCD visualized best before completion of myelination of the cortex and subcortical white matter.

View Article and Find Full Text PDF

Medication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation.

View Article and Find Full Text PDF

Drug arrows in the quiver-antiseizure, antiepileptic and neuroprotective medication: Treatment and future aspects. A focused review.

Seizure

November 2024

Department of Clinical Neuroscience and Physiology, Salgrenska Academy, Goteborg University Goteborg, Blå Stråket 5, Sweden. Electronic address:

Drug discovery for the treatment of epilepsy is entering a new era especially with the advancement of genetic therapies as disease modifying, antiepileptogenic therapies. Even new ideas about re-purposed medication with purposed epileptogenic properties have been suggested. The possibilities are enormous, and it is encouraging that so many ideas are flourishing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!