Energy level alignment between a donor and an acceptor has a critical role in determining the open-circuit voltage ( V) in polymer solar cells (PSCs). Also, broad absorption of the photoactive layer is required to generate a high photocurrent. Herein, non-fullerene PSCs with D/A random copolymers and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) has been demonstrated. The D/A random copolymers are composed of a 2-ethylhexylthienyl-substituted benzo[1,2- b:4,5- b']dithiophene (BDT) donor unit (D) and a fluorinated thieno[3,4- b]thiophene (TT-F) acceptor unit (A). By controlling the D/A unit ratio in the polymer backbone, it is possible to modulate both the energy levels and absorption spectra of random copolymers. As the ratio of the donor unit in the polymer back bone increases, the highest occupied molecular orbital energy level is located deeper, leading to higher V. Also, the absorption spectra of random copolymers become blue-shifted with an increase of the donor unit ratio; it compensates the weak absorption region of ITIC. This complementary absorption enhances the photocurrent, leading to higher power conversion efficiency (PCE). Because of the optimization of the D/A ratio of random copolymers, a notable PCE of 10.27% can be achieved in PSCs with D5A and ITIC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b16202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!