The dynamic interactions between complex molecular structures underlie a wide range of sophisticated behaviors in biological systems. In building artificial molecular machines out of DNA, an outstanding challenge is to develop mechanisms that can control the kinetics of interacting DNA nanostructures and that can compose the interactions together to carry out system-level functions. Here we show a mechanism of DNA tile displacement that follows the principles of toehold binding and branch migration similar to DNA strand displacement, but occurs at a larger scale between interacting DNA origami structures. Utilizing this mechanism, we show controlled reaction kinetics over five orders of magnitude and programmed cascades of reactions in multi-structure systems. Furthermore, we demonstrate the generality of tile displacement for occurring at any location in an array in any order, illustrated as a tic-tac-toe game. Our results suggest that tile displacement is a simple-yet-powerful mechanism that opens up the possibility for complex structural components in artificial molecular machines to undergo information-based reconfiguration in response to their environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299139PMC
http://dx.doi.org/10.1038/s41467-018-07805-7DOI Listing

Publication Analysis

Top Keywords

interacting dna
12
tile displacement
12
dna nanostructures
8
artificial molecular
8
molecular machines
8
dna
6
information-based autonomous
4
autonomous reconfiguration
4
reconfiguration systems
4
systems interacting
4

Similar Publications

1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.

View Article and Find Full Text PDF

The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.

View Article and Find Full Text PDF

HIV-1 Vif global diversity and possible APOBEC-mediated response since 1980.

Virus Evol

December 2024

U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.

HIV-1 Vif's principal function is to counter the antiretroviral activities of DNA-editing APOBEC3 cytidine deaminases. Unconstrained APOBEC3 activity introduces premature stop codons in HIV-1 genes and can lead to viral inactivation. To investigate the evolution and diversification of Vif over the HIV-1 pandemic and document evidence of APOBEC3-mediated pressure, we analyzed 4612 publicly available sequences derived from 10 dominant subtypes and circulating recombinant forms (CRFs) using the Hervé platform.

View Article and Find Full Text PDF

Manganese dioxide (MnO), lauded for its biocompatibility and distinctive optical and physical characteristics, has become an indispensable material in the biomedical field, showing immense potential in disease detection, treatment, and prevention. Particularly, the ability of MnO nanoparticles to oxidize glutathione (GSH) to its oxidized form has positioned them as pivotal players in GSH sensing. However, conventional preparation methods, whether top-down or bottom-up, often result in nanoparticles that require multi-step processing and modification to achieve good dispersion in physiological conditions, which is both time-consuming and complex.

View Article and Find Full Text PDF

Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!