Aim: Temporary cement can be applied for both permanent and temporary cementation of implant-supported fixed restorations. These cements must have certain physical and mechanical properties. Specifically, the film thickness directly affects the cement's clinical success. The aim of this study was to evaluate and compare the film thicknesses of six temporary cements before and after thermal cycling.

Materials And Methods: Eighty-four metal copings with uniform holding loops were fabricated and divided into 12 groups of seven samples each. Six of these groups were subjected to a thermal cycling process. The copings were cemented to solid implant abutments (Implance Solid Abutment, 3.5-mm cervical diameter, 2 mm high, 6° taper, Implance Dental Implant System; AGS Medical, Trabzon, Turkey), using six different types of cement. The fitting surfaces were coated with the luting cements. After steeping in artificial saliva for 24 hours, the specimens were subjected to pull-out testing using an Instron machine. Specimens in the thermal cycling groups were subjected to 700 thermal cycles (36-55°C) prior to pull-out testing.

Results: The Mann-Whitney U test revealed significant differences between the retention values of the thermal cycling (+) and thermal cycling (-) groups (U = 153.0, P < 0.01). The retention values of the groups subjected to thermal cycling were significantly lower than those of the cements that were not subjected to thermal cycling. Thermal cycling also affected the film thickness significantly (Wilcoxon signed rank test, Z = -5.533, P < 0.001).

Conclusions: Thermal cycling affects the film thickness and retention of temporary cements significantly. The retention value was significantly higher for glass ionomer cement than for the other cements tested, and this cement also exhibited greatest film thickness.

Download full-text PDF

Source
http://dx.doi.org/10.4103/njcp.njcp_382_17DOI Listing

Publication Analysis

Top Keywords

thermal cycling
36
film thickness
16
temporary cements
12
groups subjected
12
subjected thermal
12
thermal
11
cycling
9
film thicknesses
8
thicknesses temporary
8
cements thermal
8

Similar Publications

LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.

Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.

View Article and Find Full Text PDF

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Customized nano-biocatalysts of laccase have been made using nano-structured polyaniline viz. nano-fibers and nano-tubes, as immobilization supports and a simultaneous comparison between them has been made. Laccases are poly-phenol oxidases having tremendous utility concerning wider areas of application especially in the field of organic and drug syntheses.

View Article and Find Full Text PDF

Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure.

Environ Pollut

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!