For achieving active shape transformable materials and structures, smart materials with shape memory effects along with deliberate structure design are generally used as the critical parameters in realizing structure transformation. Beyond such conventional approaches, here a novel structure-guided multimaterial three-dimensional (3D) printing strategy based on twistable origami structures is demonstrated to realize dynamic smart shape transformation. By thermally or photothermally triggering the prestored energy in the twisted structures, the 3D-printed integrated origami structures based on Miura and square-twist origami structures coupled with modifying by kirigami approaches are enabled to present a variable multistep transformable feature as well as a manipulatable stimulus-response behavior. Such shape transformation configuration allows the integrated origami and kirigami structures for constructing smart structures in delivering dynamic multifunction. More importantly, the shape transformation mechanism also suggests a unique capability in mechanical energy storage and release, promising a novel prototype of mechanical actuators. Implication of the results offers a great platform to construct smart and active structures using structure-guided strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b17776 | DOI Listing |
Discov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Liaoning Technical University, Fuxin, 123000, China.
Conventional energy-absorbing components have limitations in terms of performance and functionality, including significant variability in reaction forces, inherent instability, and inadequate energy absorption capabilities. This paper presents a threaded shear-type energy-absorbing component designed for anti-impact hydraulic support columns, specifically for ZQL advancing support roadway hydraulic supports. The component operates based on the principle of threaded shear energy absorption.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFSoft Robot
January 2025
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Higher-order DNA nanomaterials have emerged as programmable tools for probing biological processes, constructing metamaterials, and manipulating mechanically active nanodevices with the multifunctionality and high-performance attributes. However, their utility is limited by intricate mixtures formed during hierarchical multistage assembly, as standard techniques like gel electrophoresis lack the resolution and applicability needed for precise characterization and enrichment. Thus, it is urgent to develop a sorter that provides high separation resolution, broad scope, and bioactive functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!