Rapid fluctuations of the oxygen content of both natural and anthropogenic origin are relatively common in freshwater environments. Fish adaptation to these conditions implies tolerance of both low levels of oxygen availability and reoxygenation. Hypoxia tolerance in fish has been widely studied, but the involvement of mitochondria in the response of fish to rapid hypoxia/reoxygenation stress is less known. Zebrafish, a floodplain species, is likely facing significant changes in dissolved oxygen in its natural environment and displays a moderate ability to tolerate hypoxia. In the present study, we report the effects of an acute hypoxia/reoxygenation stress (H/R) protocol on mitochondrial functionality (respiration, complex activities, rate of HO release) and redox state (level of HPs and protein oxidation) of muscle tissue. In parallel, the animal metabolic performance (routine metabolism, nitrogen excretion and swimming performance) was measured. Additionally, the recovery from H/R was tested 20 h after treatment. A significant stimulation by H/R of muscle mitochondrial respiration and HO release was observed, which was only in part counteracted by stimulation of the antioxidant system, resulting in an increased level of lipid peroxides and protein carbonyls. In parallel, H/R increased the animal oxygen consumption and urea excretion rate and reduced routine activity. A significant strong reduction of endurance at 80% U was also observed. Most of the altered parameter did not recover 20 h after reoxygenation. These data indicate a significant alteration of zebrafish muscle mitochondrial state after acute H/R, associated with changes in tissue redox state and locomotor performance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-018-1198-6DOI Listing

Publication Analysis

Top Keywords

muscle mitochondrial
12
redox state
12
acute hypoxia/reoxygenation
8
mitochondrial respiration
8
hypoxia/reoxygenation stress
8
h/r
5
muscle
4
hypoxia/reoxygenation muscle
4
mitochondrial
4
respiration redox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!