Production and characterization of polymeric nanoparticles, as colloidal dispersions, are processes that require time and technical skills to make the results accurate. Computational simulations in nanoscience have been used to help in these processes and provide agility and support to reach results: stability and quality in dispersions. Multi-Agent System for Polymeric Nanoparticles (MASPN) is an innovative and original simulation environment with features to demonstrate interactions of particles from physical-chemical parameters, ensuring Brownian motion of particles and attractive and repulsive behaviour. The MASPN environment has been designed and has been built according to the feature-driven development (FDD), as software methodology, and a multi-agent systems approach. In addition, we have used the event-driven simulation package algs4, the JASON agent building environment, all integrated by Java language. This paper aims to present the relation of the algs4 package and the JASON tool, both integrated into the MASPN environment to generate Brownian motion with elastic and inelastic collisions. The MASPN environment as a simulation tool emerges as a result, including the following features: graphical interface; integrated physical-chemical parameters; Brownian motion; JASON and algs4 integration; and distribution charts (size, zeta potential, and pH).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3889-zDOI Listing

Publication Analysis

Top Keywords

polymeric nanoparticles
12
brownian motion
12
maspn environment
12
simulation environment
8
multi-agent systems
8
physical-chemical parameters
8
environment
5
simulation
4
environment polymeric
4
nanoparticles based
4

Similar Publications

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas.

Int J Nanomedicine

January 2025

Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Introduction: Monogenic diseases can be diagnosed before birth. Systemic fetal administration of nanoparticles (NPs) grants therapeutic access to developing stem cell populations impacted by these classes of disease. Delivery of editing reagents in these NPs administered before birth has yielded encouraging results in preclinical mouse models of monogenic diseases.

View Article and Find Full Text PDF

Nanocurcumin in myocardial infarction therapy: emerging trends and future directions.

Front Bioeng Biotechnol

January 2025

Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China.

Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!