A single circular chromosome yeast.

Cell Res

Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.

Published: January 2019

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318310PMC
http://dx.doi.org/10.1038/s41422-018-0110-yDOI Listing

Publication Analysis

Top Keywords

single circular
4
circular chromosome
4
chromosome yeast
4
single
1
chromosome
1
yeast
1

Similar Publications

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

In order to improve the understanding foot function in the presence of planovalgus foot deformity, functional joint center determination is applied to the ankle and midfoot for application in 3D-gait analysis. Gait data of 36 patients with planovalgus (PV) foot deformity as well as of 33 typically developing (TD) subjects were collected using foot markers according to the Heidelberg Foot Measurement method. During single-limb stance subjects performed a circular movement of the foot and ankle (CIR) by drawing a circle with the hallux in the air.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!