Kinase-dead ATR differs from ATR loss by limiting the dynamic exchange of ATR and RPA.

Nat Commun

Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, 10032-3802, USA.

Published: December 2018

ATR kinase is activated by RPA-coated single-stranded DNA (ssDNA) to orchestrate DNA damage responses. Here we show that ATR inhibition differs from ATR loss. Mouse model expressing kinase-dead ATR (Atr), but not loss of ATR (Atr), displays ssDNA-dependent defects at the non-homologous region of X-Y chromosomes during male meiosis leading to sterility, and at telomeres, rDNA, and fragile sites during mitosis leading to lymphocytopenia. Mechanistically, we find that ATR kinase activity is necessary for the rapid exchange of ATR at DNA-damage-sites, which in turn promotes CHK1-phosphorylation. ATR-KD, but not loss of ATR, traps a subset of ATR and RPA on chromatin, where RPA is hyper-phosphorylated by ATM/DNA-PKcs and prevents downstream repair. Consequently, Atr cells have shorter inter-origin distances and are vulnerable to induced fork collapses, genome instability and mitotic catastrophe. These results reveal mechanistic differences between ATR inhibition and ATR loss, with implications for ATR signaling and cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297235PMC
http://dx.doi.org/10.1038/s41467-018-07798-3DOI Listing

Publication Analysis

Top Keywords

atr
17
atr loss
16
kinase-dead atr
8
differs atr
8
exchange atr
8
atr rpa
8
atr kinase
8
atr inhibition
8
atr atr
8
loss atr
8

Similar Publications

In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.

View Article and Find Full Text PDF

Background: Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges.

Methods: A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination.

View Article and Find Full Text PDF

DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.

View Article and Find Full Text PDF

Exploiting synthetic lethality in PDAC with antibody drug conjugates and ATR inhibition.

Eur J Med Chem

January 2025

Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with poor prognosis. Antibody-drug conjugates (ADCs) and their combinations with various anti-tumor drugs have made great progress. Camptothecin, and its derivatives (Dxd, SN-38 or exatecan) targeted TOP1 are effective payloads due to their potent anti-tumor activity.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!