The present study addresses the microbiome of the first whale fall (YOKO 16) that has been described in the deep sea in the southern Atlantic Ocean (São Paulo Plateau; 4204 m depth), in terms of its metabolic uniqueness. Sets of ten thousand protein sequences from YOKO 16 and 29 public domain metagenomes (SRA and GenBank databases) that represent various marine, terrestrial and gut-associated microbial communities were analyzed. The determination of protein functionality, based on the KAAS server, indicated that the YOKO 16 microbiome has industrially-relevant proteins, such as proteases and lipases, that have low similarity (~50%) with previously-described enzymes. The amino acid usage in the YOKO 16 protein sequences (based on blastp and Clustal analysis) revealed a pattern of preference similar to that of extremophiles, with an increased usage of polar, charged and acidic amino acids and a decreased usage of nonpolar residues. We concluded that the targeted microbiome is of potential biotechnological use, which justifies the allocation of resources for the discovery of enzymes in deep-sea whale fall communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.margen.2018.11.004 | DOI Listing |
Biol Lett
January 2025
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601, Japan.
Despite numerous studies on the rise and fall of terrestrial megafauna in the late Quaternary, knowledge about marine megafauna from this period remains limited. In this study, we performed radiocarbon dating and partial mitochondrial DNA sequencing from the skeletal remains of three species of small odontocetes (Pacific white-sided dolphins, Dall's porpoises and harbour porpoises) excavated from prehistoric archaeological sites around the Japanese shore dating back to 8500-1000 years ago (ya). Pacific white-sided dolphins that habituated the eastern coast of Hokkaido around 2000 ya belonged to different maternal groups than those from over 5000 ya and today.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical Electrical and Information Engineering, Shandong University, Weihai 264209, China.
Feature selection (FS) is a key process in many pattern-recognition tasks, which reduces dimensionality by eliminating redundant or irrelevant features. However, for complex high-dimensional issues, traditional FS methods cannot find the ideal feature combination. To overcome this disadvantage, this paper presents a multispiral whale optimization algorithm (MSWOA) for feature selection.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541000, China.
Beluga whale optimization (BWO) is a swarm-based metaheuristic algorithm inspired by the group behavior of beluga whales. BWO suffers from drawbacks such as an insufficient exploration capability and the tendency to fall into local optima. To address these shortcomings, this paper proposes augmented multi-strategy beluga optimization (AMBWO).
View Article and Find Full Text PDFSci Rep
November 2024
CNRS, Integrative Center for Neuroscience and Cognition, UMR 8002 Université de Paris Cité, Paris, France.
J R Soc N Z
March 2024
Department of Geology, University of Otago, Dunedin, New Zealand.
The earliest Miocene (Aquitanian, 23-20 Ma) remains a critically under-sampled 'dark age' in cetacean evolution. This is especially true of baleen whales (mysticetes), Aquitanian specimens of which remain almost entirely unknown. Across the globe, the nature of the cetacean fossil record radically shifts at the Oligocene-Miocene boundary, with mysticetes and some archaic odontocete lineages suddenly disappearing despite the availability of cetacean-bearing rock units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!