Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpeds.2018.11.047DOI Listing

Publication Analysis

Top Keywords

children syndrome
4
syndrome suffering
4
suffering respiratory
4
respiratory syncytial
4
syncytial virus
4
virus longer
4
longer costly
4
costly hospitalization
4
children
1
suffering
1

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Objective: To review and compare robot-assisted ipsilateral ureteroureterostomy (RALUU) and laparoscopic ipsilateral uretero-ureterostomy (LUU) in terms of efficacy and outcomes.

Methods: Clinical data of 65 children with complete renal ureteral duplication deformity admitted to the First Affiliated Hospital of Zhengzhou University from January 2015 to December 2022 were collected. Among these, 42 patients underwent laparoscopic ureteroureterostomy (LUU), designated as the LUU group, while 23 patients received robot-assisted laparoscopic ureteroureterostomy (RALUU), designated as the RALUU group.

View Article and Find Full Text PDF

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!