Background: Changing directions while walking (turning gait), often with little planning time, is essential to navigating irregular surfaces in the built-environment. It is unclear how older adults reorient their bodies under these constraints and whether adaptations are related to declines in physiological characteristics.
Research Question: The aims of this study were to (1) investigate whether surface irregularity, late-cueing, and age negatively affect coordination, kinematics, and center of mass (COM) movement during 90° turning gait and (2) determine if adaptations correlate with declines in strength, balance, and reaction-time.
Methods: Eighteen young (18-35 years) and sixteen older (65+ years) healthy adults participated in the study. Retro-reflective marker and trunk-accelerometry data were used to compute upper-body segmental reorientation timing, upper-body kinematics, and COM movement characteristics. Balance scores, lower-limb strength, and choice-reaction-times were also recorded.
Results: Young and older adults maintained a cranial-caudal (head, shoulders, pelvis) reorientation sequence (p ≤ 0.018), lowered head pitch (uneven surface; young p = 0.035 and old p < 0.001), increased maximum COM acceleration (uneven surface and late-cueing; p ≤ 0.002), and decreased COM smoothness (uneven surface; p < 0.001). Young adults increased shoulder roll (uneven surface and late-cueing; p ≤ 0.008). Reduced stride regularity (late-cueing) was observed in older (p < 0.001), compared to young (p = 0.017), adults. Declines in strength (p ≤ 0.040) and balance (p = 0.018) were correlated with gait adaptations of older adults.
Significance: Late-cueing on an uneven surface is challenging for older adults. These challenges are exacerbated by strength and balance deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2018.07.168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!