Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrasonic flaw classification in weldment is an active area of research and many artificial intelligence approaches have been applied to automate this process. However, in the industrial applications, the ultrasonic flaw signals are not noise free and automatic intelligent defect classification algorithms show relatively low classification performance. In addition, most of the algorithms require some statistical or signal processing techniques to extract some features from signals in order to make classification easier. In this article, the convolutional neural network (CNN) is applied to noisy ultrasonic signatures to improve classification performance of weldment defects and applicability. The result shows that CNN is robust, does not require specific feature extraction methods and give considerable high defect classification accuracies even for noisy signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2018.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!